Sepolia Testnet

Contract

0x14c5DFD14846524F6A9c0ff55B3170b64eE22a47

Overview

ETH Balance

0 ETH

More Info

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x60c0604079410512025-03-20 8:25:4885 days ago1742459148  Contract Creation0 ETH

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x1231ED00...60c3fB55e
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
MailboxFacet

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {Math} from "@openzeppelin/contracts-v4/utils/math/Math.sol";

import {IMailbox} from "../../chain-interfaces/IMailbox.sol";
import {IChainTypeManager} from "../../IChainTypeManager.sol";
import {IBridgehub} from "../../../bridgehub/IBridgehub.sol";

import {ITransactionFilterer} from "../../chain-interfaces/ITransactionFilterer.sol";
import {Merkle} from "../../../common/libraries/Merkle.sol";
import {PriorityQueue, PriorityOperation} from "../../libraries/PriorityQueue.sol";
import {PriorityTree} from "../../libraries/PriorityTree.sol";
import {TransactionValidator} from "../../libraries/TransactionValidator.sol";
import {WritePriorityOpParams, L2CanonicalTransaction, L2Message, L2Log, TxStatus, BridgehubL2TransactionRequest} from "../../../common/Messaging.sol";
import {MessageHashing} from "../../../common/libraries/MessageHashing.sol";
import {FeeParams, PubdataPricingMode} from "../ZKChainStorage.sol";
import {UncheckedMath} from "../../../common/libraries/UncheckedMath.sol";
import {L2ContractHelper} from "../../../common/libraries/L2ContractHelper.sol";
import {AddressAliasHelper} from "../../../vendor/AddressAliasHelper.sol";
import {ZKChainBase} from "./ZKChainBase.sol";
import {REQUIRED_L2_GAS_PRICE_PER_PUBDATA, L1_GAS_PER_PUBDATA_BYTE, L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH, PRIORITY_OPERATION_L2_TX_TYPE, PRIORITY_EXPIRATION, MAX_NEW_FACTORY_DEPS, SETTLEMENT_LAYER_RELAY_SENDER, SUPPORTED_PROOF_METADATA_VERSION, SERVICE_TRANSACTION_SENDER} from "../../../common/Config.sol";
import {L2_BOOTLOADER_ADDRESS, L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR, L2_BRIDGEHUB_ADDR} from "../../../common/L2ContractAddresses.sol";

import {IL1AssetRouter} from "../../../bridge/asset-router/IL1AssetRouter.sol";

import {MerklePathEmpty, OnlyEraSupported, BatchNotExecuted, HashedLogIsDefault, BaseTokenGasPriceDenominatorNotSet, TransactionNotAllowed, GasPerPubdataMismatch, TooManyFactoryDeps, MsgValueTooLow, InvalidProofLengthForFinalNode} from "../../../common/L1ContractErrors.sol";
import {NotL1, UnsupportedProofMetadataVersion, LocalRootIsZero, LocalRootMustBeZero, NotSettlementLayer, NotHyperchain} from "../../L1StateTransitionErrors.sol";

// While formally the following import is not used, it is needed to inherit documentation from it
import {IZKChainBase} from "../../chain-interfaces/IZKChainBase.sol";

/// @title ZKsync Mailbox contract providing interfaces for L1 <-> L2 interaction.
/// @author Matter Labs
/// @custom:security-contact [email protected]
contract MailboxFacet is ZKChainBase, IMailbox {
    using UncheckedMath for uint256;
    using PriorityQueue for PriorityQueue.Queue;
    using PriorityTree for PriorityTree.Tree;

    /// @inheritdoc IZKChainBase
    string public constant override getName = "MailboxFacet";

    /// @dev Era's chainID
    uint256 internal immutable ERA_CHAIN_ID;

    /// @notice The chain id of L1. This contract can be deployed on multiple layers, but this value is still equal to the
    /// L1 that is at the most base layer.
    uint256 internal immutable L1_CHAIN_ID;

    modifier onlyL1() {
        if (block.chainid != L1_CHAIN_ID) {
            revert NotL1(block.chainid);
        }
        _;
    }

    constructor(uint256 _eraChainId, uint256 _l1ChainId) {
        ERA_CHAIN_ID = _eraChainId;
        L1_CHAIN_ID = _l1ChainId;
    }

    /// @inheritdoc IMailbox
    function bridgehubRequestL2Transaction(
        BridgehubL2TransactionRequest calldata _request
    ) external onlyBridgehub returns (bytes32 canonicalTxHash) {
        canonicalTxHash = _requestL2TransactionSender(_request);
    }

    /// @inheritdoc IMailbox
    function proveL2MessageInclusion(
        uint256 _batchNumber,
        uint256 _index,
        L2Message calldata _message,
        bytes32[] calldata _proof
    ) public view returns (bool) {
        return _proveL2LogInclusion(_batchNumber, _index, _L2MessageToLog(_message), _proof);
    }

    /// @inheritdoc IMailbox
    function proveL2LogInclusion(
        uint256 _batchNumber,
        uint256 _index,
        L2Log calldata _log,
        bytes32[] calldata _proof
    ) external view returns (bool) {
        return _proveL2LogInclusion(_batchNumber, _index, _log, _proof);
    }

    /// @inheritdoc IMailbox
    function proveL1ToL2TransactionStatus(
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof,
        TxStatus _status
    ) public view returns (bool) {
        // Bootloader sends an L2 -> L1 log only after processing the L1 -> L2 transaction.
        // Thus, we can verify that the L1 -> L2 transaction was included in the L2 batch with specified status.
        //
        // The semantics of such L2 -> L1 log is always:
        // - sender = L2_BOOTLOADER_ADDRESS
        // - key = hash(L1ToL2Transaction)
        // - value = status of the processing transaction (1 - success & 0 - fail)
        // - isService = true (just a conventional value)
        // - l2ShardId = 0 (means that L1 -> L2 transaction was processed in a rollup shard, other shards are not available yet anyway)
        // - txNumberInBatch = number of transaction in the batch
        L2Log memory l2Log = L2Log({
            l2ShardId: 0,
            isService: true,
            txNumberInBatch: _l2TxNumberInBatch,
            sender: L2_BOOTLOADER_ADDRESS,
            key: _l2TxHash,
            value: bytes32(uint256(_status))
        });
        return _proveL2LogInclusion(_l2BatchNumber, _l2MessageIndex, l2Log, _merkleProof);
    }

    function _parseProofMetadata(
        bytes32[] calldata _proof
    )
        internal
        pure
        returns (uint256 proofStartIndex, uint256 logLeafProofLen, uint256 batchLeafProofLen, bool finalProofNode)
    {
        bytes32 proofMetadata = _proof[0];

        // We support two formats of the proofs:
        // 1. The old format, where `_proof` is just a plain Merkle proof.
        // 2. The new format, where the first element of the `_proof` is encoded metadata, which consists of the following:
        // - first byte: metadata version (0x01).
        // - second byte: length of the log leaf proof (the proof that the log belongs to a batch).
        // - third byte: length of the batch leaf proof (the proof that the batch belongs to another settlement layer, if any).
        // - fourth byte: whether the current proof is the last in the links of recursive proofs for settlement layers.
        // - the rest of the bytes are zeroes.
        //
        // In the future the old version will be disabled, and only the new version will be supported.
        // For now, we need to support both for backwards compatibility. We distinguish between those based on whether the last 28 bytes are zeroes.
        // It is safe, since the elements of the proof are hashes and are unlikely to have 28 zero bytes in them.

        // We shift left by 4 bytes = 32 bits to remove the top 32 bits of the metadata.
        uint256 metadataAsUint256 = (uint256(proofMetadata) << 32);

        if (metadataAsUint256 == 0) {
            // It is the new version
            bytes1 metadataVersion = bytes1(proofMetadata);
            if (uint256(uint8(metadataVersion)) != SUPPORTED_PROOF_METADATA_VERSION) {
                revert UnsupportedProofMetadataVersion(uint256(uint8(metadataVersion)));
            }

            proofStartIndex = 1;
            logLeafProofLen = uint256(uint8(proofMetadata[1]));
            batchLeafProofLen = uint256(uint8(proofMetadata[2]));
            finalProofNode = uint256(uint8(proofMetadata[3])) != 0;
        } else {
            // It is the old version

            // The entire proof is a merkle path
            proofStartIndex = 0;
            logLeafProofLen = _proof.length;
            batchLeafProofLen = 0;
            finalProofNode = true;
        }

        if (finalProofNode && batchLeafProofLen != 0) {
            revert InvalidProofLengthForFinalNode();
        }
    }

    function extractSlice(
        bytes32[] calldata _proof,
        uint256 _left,
        uint256 _right
    ) internal pure returns (bytes32[] memory slice) {
        slice = new bytes32[](_right - _left);
        for (uint256 i = _left; i < _right; i = i.uncheckedInc()) {
            slice[i - _left] = _proof[i];
        }
    }

    /// @notice Extracts slice until the end of the array.
    /// @dev It is used in one place in order to circumvent the stack too deep error.
    function extractSliceUntilEnd(
        bytes32[] calldata _proof,
        uint256 _start
    ) internal pure returns (bytes32[] memory slice) {
        slice = extractSlice(_proof, _start, _proof.length);
    }

    /// @inheritdoc IMailbox
    function proveL2LeafInclusion(
        uint256 _batchNumber,
        uint256 _leafProofMask,
        bytes32 _leaf,
        bytes32[] calldata _proof
    ) external view override returns (bool) {
        return _proveL2LeafInclusion(_batchNumber, _leafProofMask, _leaf, _proof);
    }

    function _proveL2LeafInclusion(
        uint256 _batchNumber,
        uint256 _leafProofMask,
        bytes32 _leaf,
        bytes32[] calldata _proof
    ) internal view returns (bool) {
        if (_proof.length == 0) {
            revert MerklePathEmpty();
        }

        uint256 ptr = 0;
        bytes32 chainIdLeaf;
        {
            (
                uint256 proofStartIndex,
                uint256 logLeafProofLen,
                uint256 batchLeafProofLen,
                bool finalProofNode
            ) = _parseProofMetadata(_proof);
            ptr = proofStartIndex;

            bytes32 batchSettlementRoot = Merkle.calculateRootMemory(
                extractSlice(_proof, ptr, ptr + logLeafProofLen),
                _leafProofMask,
                _leaf
            );
            ptr += logLeafProofLen;

            // If the `finalProofNode` is true, then we assume that this is L1 contract of the top-level
            // in the aggregation, i.e. the batch root is stored here on L1.
            if (finalProofNode) {
                // Double checking that the batch has been executed.
                if (_batchNumber > s.totalBatchesExecuted) {
                    revert BatchNotExecuted(_batchNumber);
                }

                bytes32 correctBatchRoot = s.l2LogsRootHashes[_batchNumber];
                if (correctBatchRoot == bytes32(0)) {
                    revert LocalRootIsZero();
                }
                return correctBatchRoot == batchSettlementRoot;
            }

            if (s.l2LogsRootHashes[_batchNumber] != bytes32(0)) {
                revert LocalRootMustBeZero();
            }

            // Now, we'll have to check that the Gateway included the message.
            bytes32 batchLeafHash = MessageHashing.batchLeafHash(batchSettlementRoot, _batchNumber);

            uint256 batchLeafProofMask = uint256(bytes32(_proof[ptr]));
            ++ptr;

            bytes32 chainIdRoot = Merkle.calculateRootMemory(
                extractSlice(_proof, ptr, ptr + batchLeafProofLen),
                batchLeafProofMask,
                batchLeafHash
            );
            ptr += batchLeafProofLen;

            chainIdLeaf = MessageHashing.chainIdLeafHash(chainIdRoot, s.chainId);
        }

        uint256 settlementLayerBatchNumber;
        uint256 settlementLayerBatchRootMask;
        address settlementLayerAddress;

        // Preventing stack too deep error
        {
            // Now, we just need to double check whether this chainId leaf was present in the tree.
            uint256 settlementLayerPackedBatchInfo = uint256(_proof[ptr]);
            ++ptr;
            settlementLayerBatchNumber = uint256(settlementLayerPackedBatchInfo >> 128);
            settlementLayerBatchRootMask = uint256(settlementLayerPackedBatchInfo & ((1 << 128) - 1));

            uint256 settlementLayerChainId = uint256(_proof[ptr]);
            ++ptr;

            // Assuming that `settlementLayerChainId` is an honest chain, the `chainIdLeaf` should belong
            // to a chain's message root only if the chain has indeed executed its batch on top of it.
            //
            // We trust all chains whitelisted by the Bridgehub governance.
            if (!IBridgehub(s.bridgehub).whitelistedSettlementLayers(settlementLayerChainId)) {
                revert NotSettlementLayer();
            }

            settlementLayerAddress = IBridgehub(s.bridgehub).getZKChain(settlementLayerChainId);
        }

        return
            IMailbox(settlementLayerAddress).proveL2LeafInclusion(
                settlementLayerBatchNumber,
                settlementLayerBatchRootMask,
                chainIdLeaf,
                extractSliceUntilEnd(_proof, ptr)
            );
    }

    /// @dev Prove that a specific L2 log was sent in a specific L2 batch number
    function _proveL2LogInclusion(
        uint256 _batchNumber,
        uint256 _index,
        L2Log memory _log,
        bytes32[] calldata _proof
    ) internal view returns (bool) {
        bytes32 hashedLog = keccak256(
            // solhint-disable-next-line func-named-parameters
            abi.encodePacked(_log.l2ShardId, _log.isService, _log.txNumberInBatch, _log.sender, _log.key, _log.value)
        );
        // Check that hashed log is not the default one,
        // otherwise it means that the value is out of range of sent L2 -> L1 logs
        if (hashedLog == L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH) {
            revert HashedLogIsDefault();
        }

        // It is ok to not check length of `_proof` array, as length
        // of leaf preimage (which is `L2_TO_L1_LOG_SERIALIZE_SIZE`) is not
        // equal to the length of other nodes preimages (which are `2 * 32`)

        // We can use `index` as a mask, since the `localMessageRoot` is on the left part of the tree.

        return _proveL2LeafInclusion(_batchNumber, _index, hashedLog, _proof);
    }

    /// @dev Convert arbitrary-length message to the raw l2 log
    function _L2MessageToLog(L2Message calldata _message) internal pure returns (L2Log memory) {
        return
            L2Log({
                l2ShardId: 0,
                isService: true,
                txNumberInBatch: _message.txNumberInBatch,
                sender: address(L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR),
                key: bytes32(uint256(uint160(_message.sender))),
                value: keccak256(_message.data)
            });
    }

    /// @inheritdoc IMailbox
    function l2TransactionBaseCost(
        uint256 _gasPrice,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit
    ) public view returns (uint256) {
        uint256 l2GasPrice = _deriveL2GasPrice(_gasPrice, _l2GasPerPubdataByteLimit);
        return l2GasPrice * _l2GasLimit;
    }

    /// @notice Derives the price for L2 gas in base token to be paid.
    /// @param _l1GasPrice The gas price on L1
    /// @param _gasPerPubdata The price for each pubdata byte in L2 gas
    /// @return The price of L2 gas in the base token
    function _deriveL2GasPrice(uint256 _l1GasPrice, uint256 _gasPerPubdata) internal view returns (uint256) {
        FeeParams memory feeParams = s.feeParams;
        if (s.baseTokenGasPriceMultiplierDenominator == 0) {
            revert BaseTokenGasPriceDenominatorNotSet();
        }
        uint256 l1GasPriceConverted = (_l1GasPrice * s.baseTokenGasPriceMultiplierNominator) /
            s.baseTokenGasPriceMultiplierDenominator;
        uint256 pubdataPriceBaseToken;
        if (feeParams.pubdataPricingMode == PubdataPricingMode.Rollup) {
            // slither-disable-next-line divide-before-multiply
            pubdataPriceBaseToken = L1_GAS_PER_PUBDATA_BYTE * l1GasPriceConverted;
        }

        // slither-disable-next-line divide-before-multiply
        uint256 batchOverheadBaseToken = uint256(feeParams.batchOverheadL1Gas) * l1GasPriceConverted;
        uint256 fullPubdataPriceBaseToken = pubdataPriceBaseToken +
            batchOverheadBaseToken /
            uint256(feeParams.maxPubdataPerBatch);

        uint256 l2GasPrice = feeParams.minimalL2GasPrice + batchOverheadBaseToken / uint256(feeParams.maxL2GasPerBatch);
        uint256 minL2GasPriceBaseToken = (fullPubdataPriceBaseToken + _gasPerPubdata - 1) / _gasPerPubdata;

        return Math.max(l2GasPrice, minL2GasPriceBaseToken);
    }

    /// @inheritdoc IMailbox
    function requestL2TransactionToGatewayMailbox(
        uint256 _chainId,
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) external override onlyL1 returns (bytes32 canonicalTxHash) {
        if (!IBridgehub(s.bridgehub).whitelistedSettlementLayers(s.chainId)) {
            revert NotSettlementLayer();
        }
        if (IChainTypeManager(s.chainTypeManager).getZKChain(_chainId) != msg.sender) {
            revert NotHyperchain();
        }

        BridgehubL2TransactionRequest memory wrappedRequest = _wrapRequest({
            _chainId: _chainId,
            _canonicalTxHash: _canonicalTxHash,
            _expirationTimestamp: _expirationTimestamp
        });
        canonicalTxHash = _requestL2TransactionFree(wrappedRequest);
    }

    /// @inheritdoc IMailbox
    function bridgehubRequestL2TransactionOnGateway(
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) external override onlyBridgehub {
        _writePriorityOpHash(_canonicalTxHash, _expirationTimestamp);
        emit NewRelayedPriorityTransaction(_getTotalPriorityTxs(), _canonicalTxHash, _expirationTimestamp);
    }

    function _wrapRequest(
        uint256 _chainId,
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) internal view returns (BridgehubL2TransactionRequest memory) {
        // solhint-disable-next-line func-named-parameters
        bytes memory data = abi.encodeCall(
            IBridgehub.forwardTransactionOnGateway,
            (_chainId, _canonicalTxHash, _expirationTimestamp)
        );
        return
            BridgehubL2TransactionRequest({
                /// There is no sender for the wrapping, we use a virtual address.
                sender: SETTLEMENT_LAYER_RELAY_SENDER,
                contractL2: L2_BRIDGEHUB_ADDR,
                mintValue: 0,
                l2Value: 0,
                // Very large amount
                l2GasLimit: 72_000_000,
                l2Calldata: data,
                l2GasPerPubdataByteLimit: REQUIRED_L2_GAS_PRICE_PER_PUBDATA,
                factoryDeps: new bytes[](0),
                // Tx is free, no so refund recipient needed
                refundRecipient: address(0)
            });
    }

    ///  @inheritdoc IMailbox
    function requestL2ServiceTransaction(
        address _contractL2,
        bytes calldata _l2Calldata
    ) external onlySelf returns (bytes32 canonicalTxHash) {
        canonicalTxHash = _requestL2TransactionFree(
            BridgehubL2TransactionRequest({
                sender: SERVICE_TRANSACTION_SENDER,
                contractL2: _contractL2,
                mintValue: 0,
                l2Value: 0,
                // Very large amount
                l2GasLimit: 72_000_000,
                l2Calldata: _l2Calldata,
                l2GasPerPubdataByteLimit: REQUIRED_L2_GAS_PRICE_PER_PUBDATA,
                factoryDeps: new bytes[](0),
                // Tx is free, so no refund recipient needed
                refundRecipient: address(0)
            })
        );

        if (s.settlementLayer != address(0)) {
            // slither-disable-next-line unused-return
            IMailbox(s.settlementLayer).requestL2TransactionToGatewayMailbox({
                _chainId: s.chainId,
                _canonicalTxHash: canonicalTxHash,
                _expirationTimestamp: uint64(block.timestamp + PRIORITY_EXPIRATION)
            });
        }
    }

    function _requestL2TransactionSender(
        BridgehubL2TransactionRequest memory _request
    ) internal nonReentrant returns (bytes32 canonicalTxHash) {
        // Check that the transaction is allowed by the filterer (if the filterer is set).
        if (s.transactionFilterer != address(0)) {
            if (
                !ITransactionFilterer(s.transactionFilterer).isTransactionAllowed({
                    sender: _request.sender,
                    contractL2: _request.contractL2,
                    mintValue: _request.mintValue,
                    l2Value: _request.l2Value,
                    l2Calldata: _request.l2Calldata,
                    refundRecipient: _request.refundRecipient
                })
            ) {
                revert TransactionNotAllowed();
            }
        }

        // Enforcing that `_request.l2GasPerPubdataByteLimit` equals to a certain constant number. This is needed
        // to ensure that users do not get used to using "exotic" numbers for _request.l2GasPerPubdataByteLimit, e.g. 1-2, etc.
        // VERY IMPORTANT: nobody should rely on this constant to be fixed and every contract should give their users the ability to provide the
        // ability to provide `_request.l2GasPerPubdataByteLimit` for each independent transaction.
        // CHANGING THIS CONSTANT SHOULD BE A CLIENT-SIDE CHANGE.
        if (_request.l2GasPerPubdataByteLimit != REQUIRED_L2_GAS_PRICE_PER_PUBDATA) {
            revert GasPerPubdataMismatch();
        }

        WritePriorityOpParams memory params;
        params.request = _request;

        canonicalTxHash = _requestL2Transaction(params);
    }

    function _requestL2Transaction(WritePriorityOpParams memory _params) internal returns (bytes32 canonicalTxHash) {
        BridgehubL2TransactionRequest memory request = _params.request;

        if (request.factoryDeps.length > MAX_NEW_FACTORY_DEPS) {
            revert TooManyFactoryDeps();
        }
        _params.txId = _nextPriorityTxId();

        // Checking that the user provided enough ether to pay for the transaction.
        _params.l2GasPrice = _deriveL2GasPrice(tx.gasprice, request.l2GasPerPubdataByteLimit);
        uint256 baseCost = _params.l2GasPrice * request.l2GasLimit;
        if (request.mintValue < baseCost + request.l2Value) {
            revert MsgValueTooLow(baseCost + request.l2Value, request.mintValue);
        }

        request.refundRecipient = AddressAliasHelper.actualRefundRecipient(request.refundRecipient, request.sender);
        // Change the sender address if it is a smart contract to prevent address collision between L1 and L2.
        // Please note, currently ZKsync address derivation is different from Ethereum one, but it may be changed in the future.
        // solhint-disable avoid-tx-origin
        // slither-disable-next-line tx-origin
        if (request.sender != tx.origin) {
            request.sender = AddressAliasHelper.applyL1ToL2Alias(request.sender);
        }

        // populate missing fields
        _params.expirationTimestamp = uint64(block.timestamp + PRIORITY_EXPIRATION); // Safe to cast

        L2CanonicalTransaction memory transaction;
        (transaction, canonicalTxHash) = _validateTx(_params);

        _writePriorityOp(transaction, _params.request.factoryDeps, canonicalTxHash, _params.expirationTimestamp);
        if (s.settlementLayer != address(0)) {
            // slither-disable-next-line unused-return
            IMailbox(s.settlementLayer).requestL2TransactionToGatewayMailbox({
                _chainId: s.chainId,
                _canonicalTxHash: canonicalTxHash,
                _expirationTimestamp: _params.expirationTimestamp
            });
        }
    }

    function _nextPriorityTxId() internal view returns (uint256) {
        if (_isPriorityQueueActive()) {
            return s.priorityQueue.getTotalPriorityTxs();
        } else {
            return s.priorityTree.getTotalPriorityTxs();
        }
    }

    function _requestL2TransactionFree(
        BridgehubL2TransactionRequest memory _request
    ) internal nonReentrant returns (bytes32 canonicalTxHash) {
        WritePriorityOpParams memory params = WritePriorityOpParams({
            request: _request,
            txId: _nextPriorityTxId(),
            l2GasPrice: 0,
            expirationTimestamp: uint64(block.timestamp + PRIORITY_EXPIRATION)
        });

        L2CanonicalTransaction memory transaction;
        (transaction, canonicalTxHash) = _validateTx(params);
        _writePriorityOp(transaction, params.request.factoryDeps, canonicalTxHash, params.expirationTimestamp);
    }

    function _serializeL2Transaction(
        WritePriorityOpParams memory _priorityOpParams
    ) internal pure returns (L2CanonicalTransaction memory transaction) {
        BridgehubL2TransactionRequest memory request = _priorityOpParams.request;
        transaction = L2CanonicalTransaction({
            txType: PRIORITY_OPERATION_L2_TX_TYPE,
            from: uint256(uint160(request.sender)),
            to: uint256(uint160(request.contractL2)),
            gasLimit: request.l2GasLimit,
            gasPerPubdataByteLimit: request.l2GasPerPubdataByteLimit,
            maxFeePerGas: uint256(_priorityOpParams.l2GasPrice),
            maxPriorityFeePerGas: uint256(0),
            paymaster: uint256(0),
            // Note, that the priority operation id is used as "nonce" for L1->L2 transactions
            nonce: uint256(_priorityOpParams.txId),
            value: request.l2Value,
            reserved: [request.mintValue, uint256(uint160(request.refundRecipient)), 0, 0],
            data: request.l2Calldata,
            signature: new bytes(0),
            factoryDeps: _hashFactoryDeps(request.factoryDeps),
            paymasterInput: new bytes(0),
            reservedDynamic: new bytes(0)
        });
    }

    function _validateTx(
        WritePriorityOpParams memory _priorityOpParams
    ) internal view returns (L2CanonicalTransaction memory transaction, bytes32 canonicalTxHash) {
        transaction = _serializeL2Transaction(_priorityOpParams);
        bytes memory transactionEncoding = abi.encode(transaction);
        TransactionValidator.validateL1ToL2Transaction(
            transaction,
            transactionEncoding,
            s.priorityTxMaxGasLimit,
            s.feeParams.priorityTxMaxPubdata
        );
        canonicalTxHash = keccak256(transactionEncoding);
    }

    /// @notice Stores a transaction record in storage & send event about that
    function _writePriorityOp(
        L2CanonicalTransaction memory _transaction,
        bytes[] memory _factoryDeps,
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) internal {
        _writePriorityOpHash(_canonicalTxHash, _expirationTimestamp);

        // Data that is needed for the operator to simulate priority queue offchain
        // solhint-disable-next-line func-named-parameters
        emit NewPriorityRequest(_transaction.nonce, _canonicalTxHash, _expirationTimestamp, _transaction, _factoryDeps);
    }

    function _writePriorityOpHash(bytes32 _canonicalTxHash, uint64 _expirationTimestamp) internal {
        if (_isPriorityQueueActive()) {
            s.priorityQueue.pushBack(
                PriorityOperation({
                    canonicalTxHash: _canonicalTxHash,
                    expirationTimestamp: _expirationTimestamp,
                    layer2Tip: uint192(0) // TODO: Restore after fee modeling will be stable. (SMA-1230)
                })
            );
        }
        s.priorityTree.push(_canonicalTxHash);
    }

    /// @notice Hashes the L2 bytecodes and returns them in the format in which they are processed by the bootloader
    function _hashFactoryDeps(bytes[] memory _factoryDeps) internal pure returns (uint256[] memory hashedFactoryDeps) {
        uint256 factoryDepsLen = _factoryDeps.length;
        hashedFactoryDeps = new uint256[](factoryDepsLen);
        for (uint256 i = 0; i < factoryDepsLen; i = i.uncheckedInc()) {
            bytes32 hashedBytecode = L2ContractHelper.hashL2Bytecode(_factoryDeps[i]);

            // Store the resulting hash sequentially in bytes.
            assembly {
                mstore(add(hashedFactoryDeps, mul(add(i, 1), 32)), hashedBytecode)
            }
        }
    }

    ///////////////////////////////////////////////////////
    //////// Legacy Era functions

    /// @inheritdoc IMailbox
    function finalizeEthWithdrawal(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external nonReentrant onlyL1 {
        if (s.chainId != ERA_CHAIN_ID) {
            revert OnlyEraSupported();
        }
        address sharedBridge = IBridgehub(s.bridgehub).sharedBridge();
        IL1AssetRouter(sharedBridge).finalizeWithdrawal({
            _chainId: ERA_CHAIN_ID,
            _l2BatchNumber: _l2BatchNumber,
            _l2MessageIndex: _l2MessageIndex,
            _l2TxNumberInBatch: _l2TxNumberInBatch,
            _message: _message,
            _merkleProof: _merkleProof
        });
    }

    ///  @inheritdoc IMailbox
    function requestL2Transaction(
        address _contractL2,
        uint256 _l2Value,
        bytes calldata _calldata,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit,
        bytes[] calldata _factoryDeps,
        address _refundRecipient
    ) external payable onlyL1 returns (bytes32 canonicalTxHash) {
        if (s.chainId != ERA_CHAIN_ID) {
            revert OnlyEraSupported();
        }
        canonicalTxHash = _requestL2TransactionSender(
            BridgehubL2TransactionRequest({
                sender: msg.sender,
                contractL2: _contractL2,
                mintValue: msg.value,
                l2Value: _l2Value,
                l2GasLimit: _l2GasLimit,
                l2Calldata: _calldata,
                l2GasPerPubdataByteLimit: _l2GasPerPubdataByteLimit,
                factoryDeps: _factoryDeps,
                refundRecipient: _refundRecipient
            })
        );
        address sharedBridge = IBridgehub(s.bridgehub).sharedBridge();
        IL1AssetRouter(sharedBridge).bridgehubDepositBaseToken{value: msg.value}(
            s.chainId,
            s.baseTokenAssetId,
            msg.sender,
            msg.value
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {IZKChainBase} from "./IZKChainBase.sol";
import {L2CanonicalTransaction, L2Log, L2Message, TxStatus, BridgehubL2TransactionRequest} from "../../common/Messaging.sol";

/// @title The interface of the ZKsync Mailbox contract that provides interfaces for L1 <-> L2 interaction.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IMailbox is IZKChainBase {
    /// @notice Prove that a specific arbitrary-length message was sent in a specific L2 batch number
    /// @param _batchNumber The executed L2 batch number in which the message appeared
    /// @param _index The position in the L2 logs Merkle tree of the l2Log that was sent with the message
    /// @param _message Information about the sent message: sender address, the message itself, tx index in the L2 batch where the message was sent
    /// @param _proof Merkle proof for inclusion of L2 log that was sent with the message
    /// @return Whether the proof is valid
    function proveL2MessageInclusion(
        uint256 _batchNumber,
        uint256 _index,
        L2Message calldata _message,
        bytes32[] calldata _proof
    ) external view returns (bool);

    /// @notice Prove that a specific L2 log was sent in a specific L2 batch
    /// @param _batchNumber The executed L2 batch number in which the log appeared
    /// @param _index The position of the l2log in the L2 logs Merkle tree
    /// @param _log Information about the sent log
    /// @param _proof Merkle proof for inclusion of the L2 log
    /// @return Whether the proof is correct and L2 log is included in batch
    function proveL2LogInclusion(
        uint256 _batchNumber,
        uint256 _index,
        L2Log memory _log,
        bytes32[] calldata _proof
    ) external view returns (bool);

    /// @notice Prove that the L1 -> L2 transaction was processed with the specified status.
    /// @param _l2TxHash The L2 canonical transaction hash
    /// @param _l2BatchNumber The L2 batch number where the transaction was processed
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message
    /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent
    /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction
    /// @param _status The execution status of the L1 -> L2 transaction (true - success & 0 - fail)
    /// @return Whether the proof is correct and the transaction was actually executed with provided status
    /// NOTE: It may return `false` for incorrect proof, but it doesn't mean that the L1 -> L2 transaction has an opposite status!
    function proveL1ToL2TransactionStatus(
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof,
        TxStatus _status
    ) external view returns (bool);

    /// @notice Finalize the withdrawal and release funds
    /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message
    /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent
    /// @param _message The L2 withdraw data, stored in an L2 -> L1 message
    /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization
    function finalizeEthWithdrawal(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;

    /// @notice Request execution of L2 transaction from L1.
    /// @param _contractL2 The L2 receiver address
    /// @param _l2Value `msg.value` of L2 transaction
    /// @param _calldata The input of the L2 transaction
    /// @param _l2GasLimit Maximum amount of L2 gas that transaction can consume during execution on L2
    /// @param _l2GasPerPubdataByteLimit The maximum amount L2 gas that the operator may charge the user for single byte of pubdata.
    /// @param _factoryDeps An array of L2 bytecodes that will be marked as known on L2
    /// @param _refundRecipient The address on L2 that will receive the refund for the transaction.
    /// @dev If the L2 deposit finalization transaction fails, the `_refundRecipient` will receive the `_l2Value`.
    /// Please note, the contract may change the refund recipient's address to eliminate sending funds to addresses out of control.
    /// - If `_refundRecipient` is a contract on L1, the refund will be sent to the aliased `_refundRecipient`.
    /// - If `_refundRecipient` is set to `address(0)` and the sender has NO deployed bytecode on L1, the refund will be sent to the `msg.sender` address.
    /// - If `_refundRecipient` is set to `address(0)` and the sender has deployed bytecode on L1, the refund will be sent to the aliased `msg.sender` address.
    /// @dev The address aliasing of L1 contracts as refund recipient on L2 is necessary to guarantee that the funds are controllable,
    /// since address aliasing to the from address for the L2 tx will be applied if the L1 `msg.sender` is a contract.
    /// Without address aliasing for L1 contracts as refund recipients they would not be able to make proper L2 tx requests
    /// through the Mailbox to use or withdraw the funds from L2, and the funds would be lost.
    /// @return canonicalTxHash The hash of the requested L2 transaction. This hash can be used to follow the transaction status
    function requestL2Transaction(
        address _contractL2,
        uint256 _l2Value,
        bytes calldata _calldata,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit,
        bytes[] calldata _factoryDeps,
        address _refundRecipient
    ) external payable returns (bytes32 canonicalTxHash);

    /// @notice when requesting transactions through the bridgehub
    function bridgehubRequestL2Transaction(
        BridgehubL2TransactionRequest calldata _request
    ) external returns (bytes32 canonicalTxHash);

    /// @dev On the Gateway the chain's mailbox receives the tx from the bridgehub.
    function bridgehubRequestL2TransactionOnGateway(bytes32 _canonicalTxHash, uint64 _expirationTimestamp) external;

    /// @notice Request execution of service L2 transaction from L1.
    /// @dev Used for chain configuration. Can be called only by DiamondProxy itself.
    /// @param _contractL2 The L2 receiver address
    /// @param _l2Calldata The input of the L2 transaction
    function requestL2ServiceTransaction(
        address _contractL2,
        bytes calldata _l2Calldata
    ) external returns (bytes32 canonicalTxHash);

    /// @dev On L1 we have to forward to the Gateway's mailbox which sends to the Bridgehub on the Gw
    /// @param _chainId the chainId of the chain
    /// @param _canonicalTxHash the canonical transaction hash
    /// @param _expirationTimestamp the expiration timestamp
    function requestL2TransactionToGatewayMailbox(
        uint256 _chainId,
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) external returns (bytes32 canonicalTxHash);

    /// @notice Estimates the cost in Ether of requesting execution of an L2 transaction from L1
    /// @param _gasPrice expected L1 gas price at which the user requests the transaction execution
    /// @param _l2GasLimit Maximum amount of L2 gas that transaction can consume during execution on L2
    /// @param _l2GasPerPubdataByteLimit The maximum amount of L2 gas that the operator may charge the user for a single byte of pubdata.
    /// @return The estimated ETH spent on L2 gas for the transaction
    function l2TransactionBaseCost(
        uint256 _gasPrice,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit
    ) external view returns (uint256);

    /// @dev Proves that a certain leaf was included as part of the log merkle tree.
    /// @dev Warning: this function does not enforce any additional checks on the structure
    /// of the leaf. This means that it can accept intermediate nodes of the Merkle tree as a `_leaf` as
    /// well as the default "empty" leaves. It is the responsibility of the caller to ensure that the
    /// `_leaf` is a hash of a valid leaf.
    function proveL2LeafInclusion(
        uint256 _batchNumber,
        uint256 _batchRootMask,
        bytes32 _leaf,
        bytes32[] calldata _proof
    ) external view returns (bool);

    /// @notice transfer Eth to shared bridge as part of migration process
    // function transferEthToSharedBridge() external;

    // function relayTxSL(
    //     address _to,
    //     L2CanonicalTransaction memory _transaction,
    //     bytes[] memory _factoryDeps,
    //     bytes32 _canonicalTxHash,
    //     uint64 _expirationTimestamp
    // ) external;

    // function freeAcceptTx(
    //     L2CanonicalTransaction memory _transaction,
    //     bytes[] memory _factoryDeps,
    //     bytes32 _canonicalTxHash,
    //     uint64 _expirationTimestamp
    // ) external;

    // function acceptFreeRequestFromBridgehub(BridgehubL2TransactionRequest calldata _request) external;

    /// @notice New priority request event. Emitted when a request is placed into the priority queue
    /// @param txId Serial number of the priority operation
    /// @param txHash keccak256 hash of encoded transaction representation
    /// @param expirationTimestamp Timestamp up to which priority request should be processed
    /// @param transaction The whole transaction structure that is requested to be executed on L2
    /// @param factoryDeps An array of bytecodes that were shown in the L1 public data.
    /// Will be marked as known bytecodes in L2
    event NewPriorityRequest(
        uint256 txId,
        bytes32 txHash,
        uint64 expirationTimestamp,
        L2CanonicalTransaction transaction,
        bytes[] factoryDeps
    );

    /// @notice New relayed priority request event. It is emitted on a chain that is deployed
    /// on top of the gateway when it receives a request relayed via the Bridgehub.
    /// @dev IMPORTANT: this event most likely will be removed in the future, so
    /// no one should rely on it for indexing purposes.
    /// @param txId Serial number of the priority operation
    /// @param txHash keccak256 hash of encoded transaction representation
    /// @param expirationTimestamp Timestamp up to which priority request should be processed
    event NewRelayedPriorityTransaction(uint256 txId, bytes32 txHash, uint64 expirationTimestamp);
}

File 4 of 41 : IChainTypeManager.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {Diamond} from "./libraries/Diamond.sol";
import {L2CanonicalTransaction} from "../common/Messaging.sol";
import {FeeParams} from "./chain-deps/ZKChainStorage.sol";

// import {IBridgehub} from "../bridgehub/IBridgehub.sol";

/// @notice Struct that holds all data needed for initializing CTM Proxy.
/// @dev We use struct instead of raw parameters in `initialize` function to prevent "Stack too deep" error
/// @param owner The address who can manage non-critical updates in the contract
/// @param validatorTimelock The address that serves as consensus, i.e. can submit blocks to be processed
/// @param chainCreationParams The struct that contains the fields that define how a new chain should be created
/// @param protocolVersion The initial protocol version on the newly deployed chain
/// @param serverNotifier The address that serves as server notifier
// solhint-disable-next-line gas-struct-packing
struct ChainTypeManagerInitializeData {
    address owner;
    address validatorTimelock;
    ChainCreationParams chainCreationParams;
    uint256 protocolVersion;
    address serverNotifier;
}

/// @notice The struct that contains the fields that define how a new chain should be created
/// within this CTM.
/// @param genesisUpgrade The address that is used in the diamond cut initialize address on chain creation
/// @param genesisBatchHash Batch hash of the genesis (initial) batch
/// @param genesisIndexRepeatedStorageChanges The serial number of the shortcut storage key for the genesis batch
/// @param genesisBatchCommitment The zk-proof commitment for the genesis batch
/// @param diamondCut The diamond cut for the first upgrade transaction on the newly deployed chain
// solhint-disable-next-line gas-struct-packing
struct ChainCreationParams {
    address genesisUpgrade;
    bytes32 genesisBatchHash;
    uint64 genesisIndexRepeatedStorageChanges;
    bytes32 genesisBatchCommitment;
    Diamond.DiamondCutData diamondCut;
    bytes forceDeploymentsData;
}

interface IChainTypeManager {
    /// @dev Emitted when a new ZKChain is added
    event NewZKChain(uint256 indexed _chainId, address indexed _zkChainContract);

    /// @dev emitted when an chain registers and a GenesisUpgrade happens
    event GenesisUpgrade(
        address indexed _zkChain,
        L2CanonicalTransaction _l2Transaction,
        uint256 indexed _protocolVersion
    );

    /// @notice pendingAdmin is changed
    /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address
    event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin);

    /// @notice Admin changed
    event NewAdmin(address indexed oldAdmin, address indexed newAdmin);

    /// @notice ValidatorTimelock changed
    event NewValidatorTimelock(address indexed oldValidatorTimelock, address indexed newValidatorTimelock);

    /// @notice ServerNotifier changed
    event NewServerNotifier(address indexed oldServerNotifier, address indexed newServerNotifier);

    /// @notice chain creation parameters changed
    event NewChainCreationParams(
        address genesisUpgrade,
        bytes32 genesisBatchHash,
        uint64 genesisIndexRepeatedStorageChanges,
        bytes32 genesisBatchCommitment,
        bytes32 newInitialCutHash,
        bytes32 forceDeploymentHash
    );

    /// @notice New UpgradeCutHash
    event NewUpgradeCutHash(uint256 indexed protocolVersion, bytes32 indexed upgradeCutHash);

    /// @notice New UpgradeCutData
    event NewUpgradeCutData(uint256 indexed protocolVersion, Diamond.DiamondCutData diamondCutData);

    /// @notice New ProtocolVersion
    event NewProtocolVersion(uint256 indexed oldProtocolVersion, uint256 indexed newProtocolVersion);

    /// @notice Updated ProtocolVersion deadline
    event UpdateProtocolVersionDeadline(uint256 indexed protocolVersion, uint256 deadline);

    function BRIDGE_HUB() external view returns (address);

    function setPendingAdmin(address _newPendingAdmin) external;

    function acceptAdmin() external;

    function getZKChain(uint256 _chainId) external view returns (address);

    function getHyperchain(uint256 _chainId) external view returns (address);

    function getZKChainLegacy(uint256 _chainId) external view returns (address);

    function storedBatchZero() external view returns (bytes32);

    function initialCutHash() external view returns (bytes32);

    function l1GenesisUpgrade() external view returns (address);

    function upgradeCutHash(uint256 _protocolVersion) external view returns (bytes32);

    function protocolVersion() external view returns (uint256);

    function protocolVersionDeadline(uint256 _protocolVersion) external view returns (uint256);

    function protocolVersionIsActive(uint256 _protocolVersion) external view returns (bool);

    function getProtocolVersion(uint256 _chainId) external view returns (uint256);

    function initialize(ChainTypeManagerInitializeData calldata _initializeData) external;

    function setValidatorTimelock(address _validatorTimelock) external;

    function setChainCreationParams(ChainCreationParams calldata _chainCreationParams) external;

    function getChainAdmin(uint256 _chainId) external view returns (address);

    function createNewChain(
        uint256 _chainId,
        bytes32 _baseTokenAssetId,
        address _admin,
        bytes calldata _initData,
        bytes[] calldata _factoryDeps
    ) external returns (address);

    function setNewVersionUpgrade(
        Diamond.DiamondCutData calldata _cutData,
        uint256 _oldProtocolVersion,
        uint256 _oldProtocolVersionDeadline,
        uint256 _newProtocolVersion
    ) external;

    function setUpgradeDiamondCut(Diamond.DiamondCutData calldata _cutData, uint256 _oldProtocolVersion) external;

    function executeUpgrade(uint256 _chainId, Diamond.DiamondCutData calldata _diamondCut) external;

    function setPriorityTxMaxGasLimit(uint256 _chainId, uint256 _maxGasLimit) external;

    function freezeChain(uint256 _chainId) external;

    function unfreezeChain(uint256 _chainId) external;

    function setTokenMultiplier(uint256 _chainId, uint128 _nominator, uint128 _denominator) external;

    function changeFeeParams(uint256 _chainId, FeeParams calldata _newFeeParams) external;

    function setValidator(uint256 _chainId, address _validator, bool _active) external;

    function setPorterAvailability(uint256 _chainId, bool _zkPorterIsAvailable) external;

    function upgradeChainFromVersion(
        uint256 _chainId,
        uint256 _oldProtocolVersion,
        Diamond.DiamondCutData calldata _diamondCut
    ) external;

    function getSemverProtocolVersion() external view returns (uint32, uint32, uint32);

    function forwardedBridgeBurn(
        uint256 _chainId,
        bytes calldata _data
    ) external returns (bytes memory _bridgeMintData);

    function forwardedBridgeMint(uint256 _chainId, bytes calldata _data) external returns (address);

    function forwardedBridgeRecoverFailedTransfer(
        uint256 _chainId,
        bytes32 _assetInfo,
        address _depositSender,
        bytes calldata _ctmData
    ) external;
}

File 5 of 41 : IBridgehub.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {L2Message, L2Log, TxStatus} from "../common/Messaging.sol";
import {IL1AssetHandler} from "../bridge/interfaces/IL1AssetHandler.sol";
import {ICTMDeploymentTracker} from "./ICTMDeploymentTracker.sol";
import {IMessageRoot} from "./IMessageRoot.sol";
import {IAssetHandler} from "../bridge/interfaces/IAssetHandler.sol";

struct L2TransactionRequestDirect {
    uint256 chainId;
    uint256 mintValue;
    address l2Contract;
    uint256 l2Value;
    bytes l2Calldata;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    bytes[] factoryDeps;
    address refundRecipient;
}

struct L2TransactionRequestTwoBridgesOuter {
    uint256 chainId;
    uint256 mintValue;
    uint256 l2Value;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    address refundRecipient;
    address secondBridgeAddress;
    uint256 secondBridgeValue;
    bytes secondBridgeCalldata;
}

struct L2TransactionRequestTwoBridgesInner {
    bytes32 magicValue;
    address l2Contract;
    bytes l2Calldata;
    bytes[] factoryDeps;
    bytes32 txDataHash;
}

struct BridgehubMintCTMAssetData {
    uint256 chainId;
    bytes32 baseTokenAssetId;
    bytes ctmData;
    bytes chainData;
}

struct BridgehubBurnCTMAssetData {
    uint256 chainId;
    bytes ctmData;
    bytes chainData;
}

/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IBridgehub is IAssetHandler, IL1AssetHandler {
    /// @notice pendingAdmin is changed
    /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address
    event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin);

    /// @notice Admin changed
    event NewAdmin(address indexed oldAdmin, address indexed newAdmin);

    /// @notice CTM asset registered
    event AssetRegistered(
        bytes32 indexed assetInfo,
        address indexed _assetAddress,
        bytes32 indexed additionalData,
        address sender
    );

    event SettlementLayerRegistered(uint256 indexed chainId, bool indexed isWhitelisted);

    /// @notice Emitted when the bridging to the chain is started.
    /// @param chainId Chain ID of the ZK chain
    /// @param assetId Asset ID of the token for the zkChain's CTM
    /// @param settlementLayerChainId The chain id of the settlement layer the chain migrates to.
    event MigrationStarted(uint256 indexed chainId, bytes32 indexed assetId, uint256 indexed settlementLayerChainId);

    /// @notice Emitted when the bridging to the chain is complete.
    /// @param chainId Chain ID of the ZK chain
    /// @param assetId Asset ID of the token for the zkChain's CTM
    /// @param zkChain The address of the ZK chain on the chain where it is migrated to.
    event MigrationFinalized(uint256 indexed chainId, bytes32 indexed assetId, address indexed zkChain);

    /// @notice Starts the transfer of admin rights. Only the current admin or owner can propose a new pending one.
    /// @notice New admin can accept admin rights by calling `acceptAdmin` function.
    /// @param _newPendingAdmin Address of the new admin
    function setPendingAdmin(address _newPendingAdmin) external;

    /// @notice Accepts transfer of admin rights. Only pending admin can accept the role.
    function acceptAdmin() external;

    /// Getters
    function chainTypeManagerIsRegistered(address _chainTypeManager) external view returns (bool);

    function chainTypeManager(uint256 _chainId) external view returns (address);

    function assetIdIsRegistered(bytes32 _baseTokenAssetId) external view returns (bool);

    function baseToken(uint256 _chainId) external view returns (address);

    function baseTokenAssetId(uint256 _chainId) external view returns (bytes32);

    function sharedBridge() external view returns (address);

    function messageRoot() external view returns (IMessageRoot);

    function getZKChain(uint256 _chainId) external view returns (address);

    function getAllZKChains() external view returns (address[] memory);

    function getAllZKChainChainIDs() external view returns (uint256[] memory);

    function migrationPaused() external view returns (bool);

    function admin() external view returns (address);

    function assetRouter() external view returns (address);

    /// Mailbox forwarder

    function proveL2MessageInclusion(
        uint256 _chainId,
        uint256 _batchNumber,
        uint256 _index,
        L2Message calldata _message,
        bytes32[] calldata _proof
    ) external view returns (bool);

    function proveL2LogInclusion(
        uint256 _chainId,
        uint256 _batchNumber,
        uint256 _index,
        L2Log memory _log,
        bytes32[] calldata _proof
    ) external view returns (bool);

    function proveL1ToL2TransactionStatus(
        uint256 _chainId,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof,
        TxStatus _status
    ) external view returns (bool);

    function requestL2TransactionDirect(
        L2TransactionRequestDirect calldata _request
    ) external payable returns (bytes32 canonicalTxHash);

    function requestL2TransactionTwoBridges(
        L2TransactionRequestTwoBridgesOuter calldata _request
    ) external payable returns (bytes32 canonicalTxHash);

    function l2TransactionBaseCost(
        uint256 _chainId,
        uint256 _gasPrice,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit
    ) external view returns (uint256);

    //// Registry

    function createNewChain(
        uint256 _chainId,
        address _chainTypeManager,
        bytes32 _baseTokenAssetId,
        uint256 _salt,
        address _admin,
        bytes calldata _initData,
        bytes[] calldata _factoryDeps
    ) external returns (uint256 chainId);

    function addChainTypeManager(address _chainTypeManager) external;

    function removeChainTypeManager(address _chainTypeManager) external;

    function addTokenAssetId(bytes32 _baseTokenAssetId) external;

    function setAddresses(
        address _sharedBridge,
        ICTMDeploymentTracker _l1CtmDeployer,
        IMessageRoot _messageRoot
    ) external;

    event NewChain(uint256 indexed chainId, address chainTypeManager, address indexed chainGovernance);

    event ChainTypeManagerAdded(address indexed chainTypeManager);

    event ChainTypeManagerRemoved(address indexed chainTypeManager);

    event BaseTokenAssetIdRegistered(bytes32 indexed assetId);

    function whitelistedSettlementLayers(uint256 _chainId) external view returns (bool);

    function registerSettlementLayer(uint256 _newSettlementLayerChainId, bool _isWhitelisted) external;

    function settlementLayer(uint256 _chainId) external view returns (uint256);

    // function finalizeMigrationToGateway(
    //     uint256 _chainId,
    //     address _baseToken,
    //     address _sharedBridge,
    //     address _admin,
    //     uint256 _expectedProtocolVersion,
    //     ZKChainCommitment calldata _commitment,
    //     bytes calldata _diamondCut
    // ) external;

    function forwardTransactionOnGateway(
        uint256 _chainId,
        bytes32 _canonicalTxHash,
        uint64 _expirationTimestamp
    ) external;

    function ctmAssetIdFromChainId(uint256 _chainId) external view returns (bytes32);

    function ctmAssetIdFromAddress(address _ctmAddress) external view returns (bytes32);

    function l1CtmDeployer() external view returns (ICTMDeploymentTracker);

    function ctmAssetIdToAddress(bytes32 _assetInfo) external view returns (address);

    function setCTMAssetAddress(bytes32 _additionalData, address _assetAddress) external;

    function L1_CHAIN_ID() external view returns (uint256);

    function registerAlreadyDeployedZKChain(uint256 _chainId, address _hyperchain) external;

    /// @notice return the ZK chain contract for a chainId
    /// @dev It is a legacy method. Do not use!
    function getHyperchain(uint256 _chainId) external view returns (address);

    function registerLegacyChain(uint256 _chainId) external;

    function pauseMigration() external;

    function unpauseMigration() external;
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @title The interface of the L1 -> L2 transaction filterer.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface ITransactionFilterer {
    /// @notice Check if the transaction is allowed
    /// @param sender The sender of the transaction
    /// @param contractL2 The L2 receiver address
    /// @param mintValue The value of the L1 transaction
    /// @param l2Value The msg.value of the L2 transaction
    /// @param l2Calldata The calldata of the L2 transaction
    /// @param refundRecipient The address to refund the excess value
    /// @return Whether the transaction is allowed
    function isTransactionAllowed(
        address sender,
        address contractL2,
        uint256 mintValue,
        uint256 l2Value,
        bytes memory l2Calldata,
        address refundRecipient
    ) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol";
import {MerklePathEmpty, MerklePathOutOfBounds, MerkleIndexOutOfBounds, MerklePathLengthMismatch, MerkleNothingToProve, MerkleIndexOrHeightMismatch} from "../../common/L1ContractErrors.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
library Merkle {
    using UncheckedMath for uint256;

    /// @dev Calculate Merkle root by the provided Merkle proof.
    /// NOTE: When using this function, check that the _path length is equal to the tree height to prevent shorter/longer paths attack
    /// however, for chains settling on GW the proof includes the GW proof, so the path increases. See Mailbox for more details.
    /// @param _path Merkle path from the leaf to the root
    /// @param _index Leaf index in the tree
    /// @param _itemHash Hash of leaf content
    /// @return The Merkle root
    function calculateRoot(
        bytes32[] calldata _path,
        uint256 _index,
        bytes32 _itemHash
    ) internal pure returns (bytes32) {
        uint256 pathLength = _path.length;
        _validatePathLengthForSingleProof(_index, pathLength);

        bytes32 currentHash = _itemHash;
        for (uint256 i; i < pathLength; i = i.uncheckedInc()) {
            currentHash = (_index % 2 == 0)
                ? efficientHash(currentHash, _path[i])
                : efficientHash(_path[i], currentHash);
            _index /= 2;
        }

        return currentHash;
    }

    /// @dev Calculate Merkle root by the provided Merkle proof.
    /// @dev NOTE: When using this function, check that the _path length is appropriate to prevent shorter/longer paths attack
    /// @param _path Merkle path from the leaf to the root
    /// @param _index Leaf index in the tree.
    /// @dev NOTE the tree can be joined. In this case the second tree's leaves indexes increase by the number of leaves in the first tree.
    /// @param _itemHash Hash of leaf content
    /// @return The Merkle root
    function calculateRootMemory(
        bytes32[] memory _path,
        uint256 _index,
        bytes32 _itemHash
    ) internal pure returns (bytes32) {
        uint256 pathLength = _path.length;
        _validatePathLengthForSingleProof(_index, pathLength);

        bytes32 currentHash = _itemHash;
        for (uint256 i; i < pathLength; i = i.uncheckedInc()) {
            currentHash = (_index % 2 == 0)
                ? efficientHash(currentHash, _path[i])
                : efficientHash(_path[i], currentHash);
            _index /= 2;
        }

        return currentHash;
    }

    /// @dev Calculate Merkle root by the provided Merkle proof for a range of elements
    /// NOTE: When using this function, check that the _startPath and _endPath lengths are equal to the tree height to prevent shorter/longer paths attack
    /// @param _startPath Merkle path from the first element of the range to the root
    /// @param _endPath Merkle path from the last element of the range to the root
    /// @param _startIndex Index of the first element of the range in the tree
    /// @param _itemHashes Hashes of the elements in the range
    /// @return The Merkle root
    function calculateRootPaths(
        bytes32[] memory _startPath,
        bytes32[] memory _endPath,
        uint256 _startIndex,
        bytes32[] memory _itemHashes
    ) internal pure returns (bytes32) {
        uint256 pathLength = _startPath.length;
        if (pathLength != _endPath.length) {
            revert MerklePathLengthMismatch(pathLength, _endPath.length);
        }
        if (pathLength >= 256) {
            revert MerklePathOutOfBounds();
        }
        uint256 levelLen = _itemHashes.length;
        // Edge case: we want to be able to prove an element in a single-node tree.
        if (pathLength == 0 && (_startIndex != 0 || levelLen != 1)) {
            revert MerklePathEmpty();
        }
        if (levelLen == 0) {
            revert MerkleNothingToProve();
        }
        if (_startIndex + levelLen > (1 << pathLength)) {
            revert MerkleIndexOrHeightMismatch();
        }
        bytes32[] memory itemHashes = _itemHashes;

        for (uint256 level; level < pathLength; level = level.uncheckedInc()) {
            uint256 parity = _startIndex % 2;
            // We get an extra element on the next level if on the current level elements either
            // start on an odd index (`parity == 1`) or end on an even index (`levelLen % 2 == 1`)
            uint256 nextLevelLen = levelLen / 2 + (parity | (levelLen % 2));
            for (uint256 i; i < nextLevelLen; i = i.uncheckedInc()) {
                bytes32 lhs = (i == 0 && parity == 1) ? _startPath[level] : itemHashes[2 * i - parity];
                bytes32 rhs = (i == nextLevelLen - 1 && (levelLen - parity) % 2 == 1)
                    ? _endPath[level]
                    : itemHashes[2 * i + 1 - parity];
                itemHashes[i] = efficientHash(lhs, rhs);
            }
            levelLen = nextLevelLen;
            _startIndex /= 2;
        }

        return itemHashes[0];
    }

    /// @dev Keccak hash of the concatenation of two 32-byte words
    function efficientHash(bytes32 _lhs, bytes32 _rhs) internal pure returns (bytes32 result) {
        assembly {
            mstore(0x00, _lhs)
            mstore(0x20, _rhs)
            result := keccak256(0x00, 0x40)
        }
    }

    function _validatePathLengthForSingleProof(uint256 _index, uint256 _pathLength) private pure {
        if (_pathLength >= 256) {
            revert MerklePathOutOfBounds();
        }
        if (_index >= (1 << _pathLength)) {
            revert MerkleIndexOutOfBounds();
        }
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {QueueIsEmpty} from "../../common/L1ContractErrors.sol";

/// @notice The structure that contains meta information of the L2 transaction that was requested from L1
/// @dev The weird size of fields was selected specifically to minimize the structure storage size
/// @param canonicalTxHash Hashed L2 transaction data that is needed to process it
/// @param expirationTimestamp Expiration timestamp for this request (must be satisfied before)
/// @param layer2Tip Additional payment to the validator as an incentive to perform the operation
struct PriorityOperation {
    bytes32 canonicalTxHash;
    uint64 expirationTimestamp;
    uint192 layer2Tip;
}

/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @dev The library provides the API to interact with the priority queue container
/// @dev Order of processing operations from queue - FIFO (Fist in - first out)
library PriorityQueue {
    using PriorityQueue for Queue;

    /// @notice Container that stores priority operations
    /// @param data The inner mapping that saves priority operation by its index
    /// @param head The pointer to the first unprocessed priority operation, equal to the tail if the queue is empty
    /// @param tail The pointer to the free slot
    struct Queue {
        mapping(uint256 priorityOpId => PriorityOperation priorityOp) data;
        uint256 tail;
        uint256 head;
    }

    /// @notice Returns zero if and only if no operations were processed from the queue
    /// @return Index of the oldest priority operation that wasn't processed yet
    function getFirstUnprocessedPriorityTx(Queue storage _queue) internal view returns (uint256) {
        return _queue.head;
    }

    /// @return The total number of priority operations that were added to the priority queue, including all processed ones
    function getTotalPriorityTxs(Queue storage _queue) internal view returns (uint256) {
        return _queue.tail;
    }

    /// @return The total number of unprocessed priority operations in a priority queue
    function getSize(Queue storage _queue) internal view returns (uint256) {
        return uint256(_queue.tail - _queue.head);
    }

    /// @return Whether the priority queue contains no operations
    function isEmpty(Queue storage _queue) internal view returns (bool) {
        return _queue.tail == _queue.head;
    }

    /// @notice Add the priority operation to the end of the priority queue
    function pushBack(Queue storage _queue, PriorityOperation memory _operation) internal {
        // Save value into the stack to avoid double reading from the storage
        uint256 tail = _queue.tail;

        _queue.data[tail] = _operation;
        _queue.tail = tail + 1;
    }

    /// @return The first unprocessed priority operation from the queue
    function front(Queue storage _queue) internal view returns (PriorityOperation memory) {
        // priority queue is empty
        if (_queue.isEmpty()) {
            revert QueueIsEmpty();
        }

        return _queue.data[_queue.head];
    }

    /// @notice Remove the first unprocessed priority operation from the queue
    /// @return priorityOperation that was popped from the priority queue
    function popFront(Queue storage _queue) internal returns (PriorityOperation memory priorityOperation) {
        // priority queue is empty
        if (_queue.isEmpty()) {
            revert QueueIsEmpty();
        }

        // Save value into the stack to avoid double reading from the storage
        uint256 head = _queue.head;

        priorityOperation = _queue.data[head];
        delete _queue.data[head];
        _queue.head = head + 1;
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the zkSync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {DynamicIncrementalMerkle} from "../../common/libraries/DynamicIncrementalMerkle.sol";
import {Merkle} from "../../common/libraries/Merkle.sol";
import {PriorityTreeCommitment} from "../../common/Config.sol";
import {NotHistoricalRoot, InvalidCommitment, InvalidStartIndex, InvalidUnprocessedIndex, InvalidNextLeafIndex} from "../L1StateTransitionErrors.sol";

struct PriorityOpsBatchInfo {
    bytes32[] leftPath;
    bytes32[] rightPath;
    bytes32[] itemHashes;
}

bytes32 constant ZERO_LEAF_HASH = keccak256("");

library PriorityTree {
    using PriorityTree for Tree;
    using DynamicIncrementalMerkle for DynamicIncrementalMerkle.Bytes32PushTree;

    struct Tree {
        uint256 startIndex; // priority tree started accepting priority ops from this index
        uint256 unprocessedIndex; // relative to `startIndex`
        mapping(bytes32 => bool) historicalRoots;
        DynamicIncrementalMerkle.Bytes32PushTree tree;
    }

    /// @notice Returns zero if and only if no operations were processed from the tree
    /// @return Index of the oldest priority operation that wasn't processed yet
    function getFirstUnprocessedPriorityTx(Tree storage _tree) internal view returns (uint256) {
        return _tree.startIndex + _tree.unprocessedIndex;
    }

    /// @return The total number of priority operations that were added to the priority queue, including all processed ones
    function getTotalPriorityTxs(Tree storage _tree) internal view returns (uint256) {
        return _tree.startIndex + _tree.tree._nextLeafIndex;
    }

    /// @return The total number of unprocessed priority operations in a priority queue
    function getSize(Tree storage _tree) internal view returns (uint256) {
        return _tree.tree._nextLeafIndex - _tree.unprocessedIndex;
    }

    /// @notice Add the priority operation to the end of the priority queue
    function push(Tree storage _tree, bytes32 _hash) internal {
        (, bytes32 newRoot) = _tree.tree.push(_hash);
        _tree.historicalRoots[newRoot] = true;
    }

    /// @notice Set up the tree
    function setup(Tree storage _tree, uint256 _startIndex) internal {
        bytes32 initialRoot = _tree.tree.setup(ZERO_LEAF_HASH);
        _tree.historicalRoots[initialRoot] = true;
        _tree.startIndex = _startIndex;
    }

    /// @return Returns the tree root.
    function getRoot(Tree storage _tree) internal view returns (bytes32) {
        return _tree.tree.root();
    }

    /// @param _root The root to check.
    /// @return Returns true if the root is a historical root.
    function isHistoricalRoot(Tree storage _tree, bytes32 _root) internal view returns (bool) {
        return _tree.historicalRoots[_root];
    }

    /// @notice Process the priority operations of a batch.
    /// @dev Note, that the function below only checks that a certain segment of items is present in the tree.
    /// It does not check that e.g. there are no zero items inside the provided `itemHashes`, so in theory proofs
    /// that include non-existing priority operations could be created. This function relies on the fact
    /// that the `itemHashes` of `_priorityOpsData` are hashes of valid priority transactions.
    /// This fact is ensured by the fact the rolling hash of those is sent to the Executor by the bootloader
    /// and so assuming that zero knowledge proofs are correct, so is the structure of the `itemHashes`.
    function processBatch(Tree storage _tree, PriorityOpsBatchInfo memory _priorityOpsData) internal {
        if (_priorityOpsData.itemHashes.length > 0) {
            bytes32 expectedRoot = Merkle.calculateRootPaths(
                _priorityOpsData.leftPath,
                _priorityOpsData.rightPath,
                _tree.unprocessedIndex,
                _priorityOpsData.itemHashes
            );
            if (!_tree.historicalRoots[expectedRoot]) {
                revert NotHistoricalRoot();
            }
            _tree.unprocessedIndex += _priorityOpsData.itemHashes.length;
        }
    }

    /// @notice Allows to skip a certain number of operations.
    /// @param _lastUnprocessed The new expected id of the unprocessed transaction.
    /// @dev It is used when the corresponding transactions have been processed by priority queue.
    function skipUntil(Tree storage _tree, uint256 _lastUnprocessed) internal {
        if (_tree.startIndex > _lastUnprocessed) {
            // Nothing to do, return
            return;
        }
        uint256 newUnprocessedIndex = _lastUnprocessed - _tree.startIndex;
        if (newUnprocessedIndex <= _tree.unprocessedIndex) {
            // These transactions were already processed, skip.
            return;
        }

        _tree.unprocessedIndex = newUnprocessedIndex;
    }

    /// @notice Initialize a chain from a commitment.
    function initFromCommitment(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal {
        uint256 height = _commitment.sides.length; // Height, including the root node.
        if (height == 0) {
            revert InvalidCommitment();
        }
        _tree.startIndex = _commitment.startIndex;
        _tree.unprocessedIndex = _commitment.unprocessedIndex;
        _tree.tree._nextLeafIndex = _commitment.nextLeafIndex;
        _tree.tree._sides = _commitment.sides;
        bytes32 zero = ZERO_LEAF_HASH;
        _tree.tree._zeros = new bytes32[](height);
        for (uint256 i; i < height; ++i) {
            _tree.tree._zeros[i] = zero;
            zero = Merkle.efficientHash(zero, zero);
        }
        _tree.historicalRoots[_tree.tree.root()] = true;
    }

    /// @notice Reinitialize the tree from a commitment on L1.
    function l1Reinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal {
        if (_tree.startIndex != _commitment.startIndex) {
            revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex);
        }
        if (_tree.unprocessedIndex > _commitment.unprocessedIndex) {
            revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex);
        }
        if (_tree.tree._nextLeafIndex < _commitment.nextLeafIndex) {
            revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex);
        }

        _tree.unprocessedIndex = _commitment.unprocessedIndex;
    }

    /// @notice Reinitialize the tree from a commitment on GW.
    function checkGWReinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal view {
        if (_tree.startIndex != _commitment.startIndex) {
            revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex);
        }
        if (_tree.unprocessedIndex > _commitment.unprocessedIndex) {
            revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex);
        }
        if (_tree.tree._nextLeafIndex > _commitment.nextLeafIndex) {
            revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex);
        }
    }

    /// @notice Returns the commitment to the priority tree.
    function getCommitment(Tree storage _tree) internal view returns (PriorityTreeCommitment memory commitment) {
        commitment.nextLeafIndex = _tree.tree._nextLeafIndex;
        commitment.startIndex = _tree.startIndex;
        commitment.unprocessedIndex = _tree.unprocessedIndex;
        commitment.sides = _tree.tree._sides;
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {Math} from "@openzeppelin/contracts-v4/utils/math/Math.sol";

import {L2CanonicalTransaction} from "../../common/Messaging.sol";
import {TX_SLOT_OVERHEAD_L2_GAS, MEMORY_OVERHEAD_GAS, L1_TX_INTRINSIC_L2_GAS, L1_TX_DELTA_544_ENCODING_BYTES, L1_TX_DELTA_FACTORY_DEPS_L2_GAS, L1_TX_MIN_L2_GAS_BASE, L1_TX_INTRINSIC_PUBDATA, L1_TX_DELTA_FACTORY_DEPS_PUBDATA} from "../../common/Config.sol";
import {TooMuchGas, InvalidUpgradeTxn, UpgradeTxVerifyParam, PubdataGreaterThanLimit, ValidateTxnNotEnoughGas, TxnBodyGasLimitNotEnoughGas} from "../../common/L1ContractErrors.sol";

/// @title ZKsync Library for validating L1 -> L2 transactions
/// @author Matter Labs
/// @custom:security-contact [email protected]
library TransactionValidator {
    /// @dev Used to validate key properties of an L1->L2 transaction
    /// @param _transaction The transaction to validate
    /// @param _encoded The abi encoded bytes of the transaction
    /// @param _priorityTxMaxGasLimit The max gas limit, generally provided from Storage.sol
    /// @param _priorityTxMaxPubdata The maximal amount of pubdata that a single L1->L2 transaction can emit
    function validateL1ToL2Transaction(
        L2CanonicalTransaction memory _transaction,
        bytes memory _encoded,
        uint256 _priorityTxMaxGasLimit,
        uint256 _priorityTxMaxPubdata
    ) internal pure {
        uint256 l2GasForTxBody = getTransactionBodyGasLimit(_transaction.gasLimit, _encoded.length);

        // Ensuring that the transaction is provable
        if (l2GasForTxBody > _priorityTxMaxGasLimit) {
            revert TooMuchGas();
        }
        // Ensuring that the transaction cannot output more pubdata than is processable
        if (l2GasForTxBody / _transaction.gasPerPubdataByteLimit > _priorityTxMaxPubdata) {
            revert PubdataGreaterThanLimit(_priorityTxMaxPubdata, l2GasForTxBody / _transaction.gasPerPubdataByteLimit);
        }

        // Ensuring that the transaction covers the minimal costs for its processing:
        // hashing its content, publishing the factory dependencies, etc.
        if (
            getMinimalPriorityTransactionGasLimit(
                _encoded.length,
                _transaction.factoryDeps.length,
                _transaction.gasPerPubdataByteLimit
            ) > l2GasForTxBody
        ) {
            revert ValidateTxnNotEnoughGas();
        }
    }

    /// @dev Used to validate upgrade transactions
    /// @param _transaction The transaction to validate
    function validateUpgradeTransaction(L2CanonicalTransaction memory _transaction) internal pure {
        // Restrict from to be within system contract range (0...2^16 - 1)
        if (_transaction.from > type(uint16).max) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.From);
        }
        if (_transaction.to > type(uint160).max) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.To);
        }
        if (_transaction.paymaster != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Paymaster);
        }
        if (_transaction.value != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Value);
        }
        if (_transaction.maxFeePerGas != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.MaxFeePerGas);
        }
        if (_transaction.maxPriorityFeePerGas != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.MaxPriorityFeePerGas);
        }
        if (_transaction.reserved[0] != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Reserved0);
        }
        if (_transaction.reserved[1] > type(uint160).max) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Reserved1);
        }
        if (_transaction.reserved[2] != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Reserved2);
        }
        if (_transaction.reserved[3] != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Reserved3);
        }
        if (_transaction.signature.length != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.Signature);
        }
        if (_transaction.paymasterInput.length != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.PaymasterInput);
        }
        if (_transaction.reservedDynamic.length != 0) {
            revert InvalidUpgradeTxn(UpgradeTxVerifyParam.ReservedDynamic);
        }
    }

    /// @dev Calculates the approximate minimum gas limit required for executing a priority transaction.
    /// @param _encodingLength The length of the priority transaction encoding in bytes.
    /// @param _numberOfFactoryDependencies The number of new factory dependencies that will be added.
    /// @param _l2GasPricePerPubdata The L2 gas price for publishing the priority transaction on L2.
    /// @return The minimum gas limit required to execute the priority transaction.
    /// Note: The calculation includes the main cost of the priority transaction, however, in reality, the operator can spend a little more gas on overheads.
    function getMinimalPriorityTransactionGasLimit(
        uint256 _encodingLength,
        uint256 _numberOfFactoryDependencies,
        uint256 _l2GasPricePerPubdata
    ) internal pure returns (uint256) {
        uint256 costForComputation;
        {
            // Adding the intrinsic cost for the transaction, i.e. auxiliary prices which cannot be easily accounted for
            costForComputation = L1_TX_INTRINSIC_L2_GAS;

            // Taking into account the hashing costs that depend on the length of the transaction
            // Note that L1_TX_DELTA_544_ENCODING_BYTES is the delta in the price for every 544 bytes of
            // the transaction's encoding. It is taken as LCM between 136 and 32 (the length for each keccak256 round
            // and the size of each new encoding word).
            costForComputation += Math.ceilDiv(_encodingLength * L1_TX_DELTA_544_ENCODING_BYTES, 544);

            // Taking into the account the additional costs of providing new factory dependencies
            costForComputation += _numberOfFactoryDependencies * L1_TX_DELTA_FACTORY_DEPS_L2_GAS;

            // There is a minimal amount of computational L2 gas that the transaction should cover
            costForComputation = Math.max(costForComputation, L1_TX_MIN_L2_GAS_BASE);
        }

        uint256 costForPubdata = 0;
        {
            // Adding the intrinsic cost for the transaction, i.e. auxiliary prices which cannot be easily accounted for
            costForPubdata = L1_TX_INTRINSIC_PUBDATA * _l2GasPricePerPubdata;

            // Taking into the account the additional costs of providing new factory dependencies
            costForPubdata += _numberOfFactoryDependencies * L1_TX_DELTA_FACTORY_DEPS_PUBDATA * _l2GasPricePerPubdata;
        }

        return costForComputation + costForPubdata;
    }

    /// @notice Based on the full L2 gas limit (that includes the batch overhead) and other
    /// properties of the transaction, returns the l2GasLimit for the body of the transaction (the actual execution).
    /// @param _totalGasLimit The L2 gas limit that includes both the overhead for processing the batch
    /// and the L2 gas needed to process the transaction itself (i.e. the actual l2GasLimit that will be used for the transaction).
    /// @param _encodingLength The length of the ABI-encoding of the transaction.
    function getTransactionBodyGasLimit(
        uint256 _totalGasLimit,
        uint256 _encodingLength
    ) internal pure returns (uint256 txBodyGasLimit) {
        uint256 overhead = getOverheadForTransaction(_encodingLength);

        // provided gas limit doesn't cover transaction overhead
        if (_totalGasLimit < overhead) {
            revert TxnBodyGasLimitNotEnoughGas();
        }
        unchecked {
            // We enforce the fact that `_totalGasLimit >= overhead` explicitly above.
            txBodyGasLimit = _totalGasLimit - overhead;
        }
    }

    /// @notice Based on the total L2 gas limit and several other parameters of the transaction
    /// returns the part of the L2 gas that will be spent on the batch's overhead.
    /// @dev The details of how this function works can be checked in the documentation
    /// of the fee model of ZKsync. The appropriate comments are also present
    /// in the Rust implementation description of function `get_maximal_allowed_overhead`.
    /// @param _encodingLength The length of the binary encoding of the transaction in bytes
    function getOverheadForTransaction(
        uint256 _encodingLength
    ) internal pure returns (uint256 batchOverheadForTransaction) {
        // The overhead from taking up the transaction's slot
        batchOverheadForTransaction = TX_SLOT_OVERHEAD_L2_GAS;

        // The overhead for occupying the bootloader memory can be derived from encoded_len
        uint256 overheadForLength = MEMORY_OVERHEAD_GAS * _encodingLength;
        batchOverheadForTransaction = Math.max(batchOverheadForTransaction, overheadForLength);
    }
}

File 11 of 41 : Messaging.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @dev The enum that represents the transaction execution status
/// @param Failure The transaction execution failed
/// @param Success The transaction execution succeeded
enum TxStatus {
    Failure,
    Success
}

/// @dev The log passed from L2
/// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter
/// All other values are not used but are reserved for the future
/// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address.
/// This field is required formally but does not have any special meaning
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the log was sent
/// @param sender The L2 address which sent the log
/// @param key The 32 bytes of information that was sent in the log
/// @param value The 32 bytes of information that was sent in the log
// Both `key` and `value` are arbitrary 32-bytes selected by the log sender
struct L2Log {
    uint8 l2ShardId;
    bool isService;
    uint16 txNumberInBatch;
    address sender;
    bytes32 key;
    bytes32 value;
}

/// @dev An arbitrary length message passed from L2
/// @notice Under the hood it is `L2Log` sent from the special system L2 contract
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the message was sent
/// @param sender The address of the L2 account from which the message was passed
/// @param data An arbitrary length message
struct L2Message {
    uint16 txNumberInBatch;
    address sender;
    bytes data;
}

/// @dev Internal structure that contains the parameters for the writePriorityOp
/// internal function.
/// @param txId The id of the priority transaction.
/// @param l2GasPrice The gas price for the l2 priority operation.
/// @param expirationTimestamp The timestamp by which the priority operation must be processed by the operator.
/// @param request The external calldata request for the priority operation.
struct WritePriorityOpParams {
    uint256 txId;
    uint256 l2GasPrice;
    uint64 expirationTimestamp;
    BridgehubL2TransactionRequest request;
}

/// @dev Structure that includes all fields of the L2 transaction
/// @dev The hash of this structure is the "canonical L2 transaction hash" and can
/// be used as a unique identifier of a tx
/// @param txType The tx type number, depending on which the L2 transaction can be
/// interpreted differently
/// @param from The sender's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param to The recipient's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param gasLimit The L2 gas limit for L2 transaction. Analog to the `gasLimit` on an
/// L1 transactions
/// @param gasPerPubdataByteLimit Maximum number of L2 gas that will cost one byte of pubdata
/// (every piece of data that will be stored on L1 as calldata)
/// @param maxFeePerGas The absolute maximum sender willing to pay per unit of L2 gas to get
/// the transaction included in a Batch. Analog to the EIP-1559 `maxFeePerGas` on an L1 transactions
/// @param maxPriorityFeePerGas The additional fee that is paid directly to the validator
/// to incentivize them to include the transaction in a Batch. Analog to the EIP-1559
/// `maxPriorityFeePerGas` on an L1 transactions
/// @param paymaster The address of the EIP-4337 paymaster, that will pay fees for the
/// transaction. `uint256` type for possible address format changes and maintaining backward compatibility
/// @param nonce The nonce of the transaction. For L1->L2 transactions it is the priority
/// operation Id
/// @param value The value to pass with the transaction
/// @param reserved The fixed-length fields for usage in a future extension of transaction
/// formats
/// @param data The calldata that is transmitted for the transaction call
/// @param signature An abstract set of bytes that are used for transaction authorization
/// @param factoryDeps The set of L2 bytecode hashes whose preimages were shown on L1
/// @param paymasterInput The arbitrary-length data that is used as a calldata to the paymaster pre-call
/// @param reservedDynamic The arbitrary-length field for usage in a future extension of transaction formats
struct L2CanonicalTransaction {
    uint256 txType;
    uint256 from;
    uint256 to;
    uint256 gasLimit;
    uint256 gasPerPubdataByteLimit;
    uint256 maxFeePerGas;
    uint256 maxPriorityFeePerGas;
    uint256 paymaster;
    uint256 nonce;
    uint256 value;
    // In the future, we might want to add some
    // new fields to the struct. The `txData` struct
    // is to be passed to account and any changes to its structure
    // would mean a breaking change to these accounts. To prevent this,
    // we should keep some fields as "reserved"
    // It is also recommended that their length is fixed, since
    // it would allow easier proof integration (in case we will need
    // some special circuit for preprocessing transactions)
    uint256[4] reserved;
    bytes data;
    bytes signature;
    uint256[] factoryDeps;
    bytes paymasterInput;
    // Reserved dynamic type for the future use-case. Using it should be avoided,
    // But it is still here, just in case we want to enable some additional functionality
    bytes reservedDynamic;
}

/// @param sender The sender's address.
/// @param contractAddressL2 The address of the contract on L2 to call.
/// @param valueToMint The amount of base token that should be minted on L2 as the result of this transaction.
/// @param l2Value The msg.value of the L2 transaction.
/// @param l2Calldata The calldata for the L2 transaction.
/// @param l2GasLimit The limit of the L2 gas for the L2 transaction
/// @param l2GasPerPubdataByteLimit The price for a single pubdata byte in L2 gas.
/// @param factoryDeps The array of L2 bytecodes that the tx depends on.
/// @param refundRecipient The recipient of the refund for the transaction on L2. If the transaction fails, then
/// this address will receive the `l2Value`.
// solhint-disable-next-line gas-struct-packing
struct BridgehubL2TransactionRequest {
    address sender;
    address contractL2;
    uint256 mintValue;
    uint256 l2Value;
    bytes l2Calldata;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    bytes[] factoryDeps;
    address refundRecipient;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

bytes32 constant BATCH_LEAF_PADDING = keccak256("zkSync:BatchLeaf");
bytes32 constant CHAIN_ID_LEAF_PADDING = keccak256("zkSync:ChainIdLeaf");

library MessageHashing {
    /// @dev Returns the leaf hash for a chain with batch number and batch root.
    /// @param batchRoot The root hash of the batch.
    /// @param batchNumber The number of the batch.
    function batchLeafHash(bytes32 batchRoot, uint256 batchNumber) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(BATCH_LEAF_PADDING, batchRoot, batchNumber));
    }

    /// @dev Returns the leaf hash for a chain with chain root and chain id.
    /// @param chainIdRoot The root hash of the chain.
    /// @param chainId The id of the chain.
    function chainIdLeafHash(bytes32 chainIdRoot, uint256 chainId) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(CHAIN_ID_LEAF_PADDING, chainIdRoot, chainId));
    }
}

File 13 of 41 : ZKChainStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IVerifier, VerifierParams} from "../chain-interfaces/IVerifier.sol";
// import {IChainTypeManager} from "../IChainTypeManager.sol";
import {PriorityQueue} from "../../state-transition/libraries/PriorityQueue.sol";
import {PriorityTree} from "../../state-transition/libraries/PriorityTree.sol";

/// @notice Indicates whether an upgrade is initiated and if yes what type
/// @param None Upgrade is NOT initiated
/// @param Transparent Fully transparent upgrade is initiated, upgrade data is publicly known
/// @param Shadow Shadow upgrade is initiated, upgrade data is hidden
enum UpgradeState {
    None,
    Transparent,
    Shadow
}

/// @dev Logically separated part of the storage structure, which is responsible for everything related to proxy
/// upgrades and diamond cuts
/// @param proposedUpgradeHash The hash of the current upgrade proposal, zero if there is no active proposal
/// @param state Indicates whether an upgrade is initiated and if yes what type
/// @param securityCouncil Address which has the permission to approve instant upgrades (expected to be a Gnosis
/// multisig)
/// @param approvedBySecurityCouncil Indicates whether the security council has approved the upgrade
/// @param proposedUpgradeTimestamp The timestamp when the upgrade was proposed, zero if there are no active proposals
/// @param currentProposalId The serial number of proposed upgrades, increments when proposing a new one
struct UpgradeStorage {
    bytes32 proposedUpgradeHash;
    UpgradeState state;
    address securityCouncil;
    bool approvedBySecurityCouncil;
    uint40 proposedUpgradeTimestamp;
    uint40 currentProposalId;
}

/// @notice The struct that describes whether users will be charged for pubdata for L1->L2 transactions.
/// @param Rollup The users are charged for pubdata & it is priced based on the gas price on Ethereum.
/// @param Validium The pubdata is considered free with regard to the L1 gas price.
enum PubdataPricingMode {
    Rollup,
    Validium
}

/// @notice The fee params for L1->L2 transactions for the network.
/// @param pubdataPricingMode How the users will charged for pubdata in L1->L2 transactions.
/// @param batchOverheadL1Gas The amount of L1 gas required to process the batch (except for the calldata).
/// @param maxPubdataPerBatch The maximal number of pubdata that can be emitted per batch.
/// @param priorityTxMaxPubdata The maximal amount of pubdata a priority transaction is allowed to publish.
/// It can be slightly less than maxPubdataPerBatch in order to have some margin for the bootloader execution.
/// @param minimalL2GasPrice The minimal L2 gas price to be used by L1->L2 transactions. It should represent
/// the price that a single unit of compute costs.
struct FeeParams {
    PubdataPricingMode pubdataPricingMode;
    uint32 batchOverheadL1Gas;
    uint32 maxPubdataPerBatch;
    uint32 maxL2GasPerBatch;
    uint32 priorityTxMaxPubdata;
    uint64 minimalL2GasPrice;
}

/// @dev storing all storage variables for ZK chain diamond facets
/// NOTE: It is used in a proxy, so it is possible to add new variables to the end
/// but NOT to modify already existing variables or change their order.
/// NOTE: variables prefixed with '__DEPRECATED_' are deprecated and shouldn't be used.
/// Their presence is maintained for compatibility and to prevent storage collision.
// solhint-disable-next-line gas-struct-packing
struct ZKChainStorage {
    /// @dev Storage of variables needed for deprecated diamond cut facet
    uint256[7] __DEPRECATED_diamondCutStorage;
    /// @notice Address which will exercise critical changes to the Diamond Proxy (upgrades, freezing & unfreezing). Replaced by CTM
    address __DEPRECATED_governor;
    /// @notice Address that the governor proposed as one that will replace it
    address __DEPRECATED_pendingGovernor;
    /// @notice List of permitted validators
    mapping(address validatorAddress => bool isValidator) validators;
    /// @dev Verifier contract. Used to verify aggregated proof for batches
    IVerifier verifier;
    /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch
    /// (batch 0 is genesis)
    uint256 totalBatchesExecuted;
    /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch
    uint256 totalBatchesVerified;
    /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed
    /// batch
    uint256 totalBatchesCommitted;
    /// @dev Stored hashed StoredBatch for batch number
    mapping(uint256 batchNumber => bytes32 batchHash) storedBatchHashes;
    /// @dev Stored root hashes of L2 -> L1 logs
    mapping(uint256 batchNumber => bytes32 l2LogsRootHash) l2LogsRootHashes;
    /// @dev Container that stores transactions requested from L1
    PriorityQueue.Queue priorityQueue;
    /// @dev The smart contract that manages the list with permission to call contract functions
    address __DEPRECATED_allowList;
    VerifierParams __DEPRECATED_verifierParams;
    /// @notice Bytecode hash of bootloader program.
    /// @dev Used as an input to zkp-circuit.
    bytes32 l2BootloaderBytecodeHash;
    /// @notice Bytecode hash of default account (bytecode for EOA).
    /// @dev Used as an input to zkp-circuit.
    bytes32 l2DefaultAccountBytecodeHash;
    /// @dev Indicates that the porter may be touched on L2 transactions.
    /// @dev Used as an input to zkp-circuit.
    bool zkPorterIsAvailable;
    /// @dev The maximum number of the L2 gas that a user can request for L1 -> L2 transactions
    /// @dev This is the maximum number of L2 gas that is available for the "body" of the transaction, i.e.
    /// without overhead for proving the batch.
    uint256 priorityTxMaxGasLimit;
    /// @dev Storage of variables needed for upgrade facet
    UpgradeStorage __DEPRECATED_upgrades;
    /// @dev A mapping L2 batch number => message number => flag.
    /// @dev The L2 -> L1 log is sent for every withdrawal, so this mapping is serving as
    /// a flag to indicate that the message was already processed.
    /// @dev Used to indicate that eth withdrawal was already processed
    mapping(uint256 l2BatchNumber => mapping(uint256 l2ToL1MessageNumber => bool isFinalized)) isEthWithdrawalFinalized;
    /// @dev The most recent withdrawal time and amount reset
    uint256 __DEPRECATED_lastWithdrawalLimitReset;
    /// @dev The accumulated withdrawn amount during the withdrawal limit window
    uint256 __DEPRECATED_withdrawnAmountInWindow;
    /// @dev A mapping user address => the total deposited amount by the user
    mapping(address => uint256) __DEPRECATED_totalDepositedAmountPerUser;
    /// @dev Stores the protocol version. Note, that the protocol version may not only encompass changes to the
    /// smart contracts, but also to the node behavior.
    uint256 protocolVersion;
    /// @dev Hash of the system contract upgrade transaction. If 0, then no upgrade transaction needs to be done.
    bytes32 l2SystemContractsUpgradeTxHash;
    /// @dev Batch number where the upgrade transaction has happened. If 0, then no upgrade transaction has happened
    /// yet.
    uint256 l2SystemContractsUpgradeBatchNumber;
    /// @dev Address which will exercise non-critical changes to the Diamond Proxy (changing validator set & unfreezing)
    address admin;
    /// @notice Address that the admin proposed as one that will replace admin role
    address pendingAdmin;
    /// @dev Fee params used to derive gasPrice for the L1->L2 transactions. For L2 transactions,
    /// the bootloader gives enough freedom to the operator.
    /// @dev The value is only for the L1 deployment of the ZK Chain, since payment for all the priority transactions is
    /// charged at that level.
    FeeParams feeParams;
    /// @dev Address of the blob versioned hash getter smart contract used for EIP-4844 versioned hashes.
    /// @dev Used only for testing.
    address blobVersionedHashRetriever;
    /// @dev The chainId of the chain
    uint256 chainId;
    /// @dev The address of the bridgehub
    address bridgehub;
    /// @dev The address of the ChainTypeManager
    address chainTypeManager;
    /// @dev The address of the baseToken contract. Eth is address(1)
    address __DEPRECATED_baseToken;
    /// @dev The address of the baseTokenbridge. Eth also uses the shared bridge
    address __DEPRECATED_baseTokenBridge;
    /// @notice gasPriceMultiplier for each baseToken, so that each L1->L2 transaction pays for its transaction on the destination
    /// we multiply by the nominator, and divide by the denominator
    uint128 baseTokenGasPriceMultiplierNominator;
    uint128 baseTokenGasPriceMultiplierDenominator;
    /// @dev The optional address of the contract that has to be used for transaction filtering/whitelisting
    address transactionFilterer;
    /// @dev The address of the l1DAValidator contract.
    /// This contract is responsible for the verification of the correctness of the DA on L1.
    address l1DAValidator;
    /// @dev The address of the contract on L2 that is responsible for the data availability verification.
    /// This contract sends `l2DAValidatorOutputHash` to L1 via L2->L1 system log and it will routed to the `l1DAValidator` contract.
    address l2DAValidator;
    /// @dev the Asset Id of the baseToken
    bytes32 baseTokenAssetId;
    /// @dev If this ZKchain settles on this chain, then this is zero. Otherwise it is the address of the ZKchain that is a
    /// settlement layer for this ZKchain. (think about it as a 'forwarding' address for the chain that migrated away).
    address settlementLayer;
    /// @dev Priority tree, the new data structure for priority queue
    PriorityTree.Tree priorityTree;
    /// @dev Whether the chain is a permanent rollup. Note, that it only enforces the DA validator pair, but
    /// it does not enforce any other parameters, e.g. `pubdataPricingMode`
    bool isPermanentRollup;
    /// @notice Bytecode hash of evm emulator.
    /// @dev Used as an input to zkp-circuit.
    bytes32 l2EvmEmulatorBytecodeHash;
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The library for unchecked math.
 */
library UncheckedMath {
    function uncheckedInc(uint256 _number) internal pure returns (uint256) {
        unchecked {
            return _number + 1;
        }
    }

    function uncheckedAdd(uint256 _lhs, uint256 _rhs) internal pure returns (uint256) {
        unchecked {
            return _lhs + _rhs;
        }
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {BytecodeError, MalformedBytecode, LengthIsNotDivisibleBy32} from "../L1ContractErrors.sol";

import {UncheckedMath} from "./UncheckedMath.sol";
import {L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR} from "../L2ContractAddresses.sol";

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Interface for the contract that is used to deploy contracts on L2.
 */
interface IContractDeployer {
    /// @notice A struct that describes a forced deployment on an address.
    /// @param bytecodeHash The bytecode hash to put on an address.
    /// @param newAddress The address on which to deploy the bytecodehash to.
    /// @param callConstructor Whether to run the constructor on the force deployment.
    /// @param value The `msg.value` with which to initialize a contract.
    /// @param input The constructor calldata.
    struct ForceDeployment {
        bytes32 bytecodeHash;
        address newAddress;
        bool callConstructor;
        uint256 value;
        bytes input;
    }

    /// @notice This method is to be used only during an upgrade to set bytecodes on specific addresses.
    /// @param _deployParams A set of parameters describing force deployment.
    function forceDeployOnAddresses(ForceDeployment[] calldata _deployParams) external payable;

    /// @notice Creates a new contract at a determined address using the `CREATE2` salt on L2
    /// @param _salt a unique value to create the deterministic address of the new contract
    /// @param _bytecodeHash the bytecodehash of the new contract to be deployed
    /// @param _input the calldata to be sent to the constructor of the new contract
    function create2(bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input) external returns (address);
}

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Helper library for working with L2 contracts on L1.
 */
library L2ContractHelper {
    using UncheckedMath for uint256;

    /// @dev The prefix used to create CREATE2 addresses.
    bytes32 private constant CREATE2_PREFIX = keccak256("zksyncCreate2");

    /// @dev Prefix used during derivation of account addresses using CREATE
    /// @dev keccak256("zksyncCreate")
    bytes32 private constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;

    /// @notice Sends L2 -> L1 arbitrary-long message through the system contract messenger.
    /// @param _message Data to be sent to L1.
    /// @return keccak256 hash of the sent message.
    function sendMessageToL1(bytes memory _message) internal returns (bytes32) {
        return L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR.sendToL1(_message);
    }

    /// @notice Validate the bytecode format and calculate its hash.
    /// @param _bytecode The bytecode to hash.
    /// @return hashedBytecode The 32-byte hash of the bytecode.
    /// Note: The function reverts the execution if the bytecode has non expected format:
    /// - Bytecode bytes length is not a multiple of 32
    /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
    /// - Bytecode words length is not odd
    function hashL2Bytecode(bytes memory _bytecode) internal pure returns (bytes32 hashedBytecode) {
        // Note that the length of the bytecode must be provided in 32-byte words.
        if (_bytecode.length % 32 != 0) {
            revert LengthIsNotDivisibleBy32(_bytecode.length);
        }

        uint256 bytecodeLenInWords = _bytecode.length / 32;
        // bytecode length must be less than 2^16 words
        if (bytecodeLenInWords >= 2 ** 16) {
            revert MalformedBytecode(BytecodeError.NumberOfWords);
        }
        // bytecode length in words must be odd
        if (bytecodeLenInWords % 2 == 0) {
            revert MalformedBytecode(BytecodeError.WordsMustBeOdd);
        }
        hashedBytecode = sha256(_bytecode) & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        // Setting the version of the hash
        hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
        // Setting the length
        hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224);
    }

    /// @notice Validate the bytecode format and calculate its hash.
    /// @param _bytecode The bytecode to hash.
    /// @return hashedBytecode The 32-byte hash of the bytecode.
    /// Note: The function reverts the execution if the bytecode has non expected format:
    /// - Bytecode bytes length is not a multiple of 32
    /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
    /// - Bytecode words length is not odd
    function hashL2BytecodeCalldata(bytes calldata _bytecode) internal pure returns (bytes32 hashedBytecode) {
        // Note that the length of the bytecode must be provided in 32-byte words.
        if (_bytecode.length % 32 != 0) {
            revert LengthIsNotDivisibleBy32(_bytecode.length);
        }

        uint256 bytecodeLenInWords = _bytecode.length / 32;
        // bytecode length must be less than 2^16 words
        if (bytecodeLenInWords >= 2 ** 16) {
            revert MalformedBytecode(BytecodeError.NumberOfWords);
        }
        // bytecode length in words must be odd
        if (bytecodeLenInWords % 2 == 0) {
            revert MalformedBytecode(BytecodeError.WordsMustBeOdd);
        }
        hashedBytecode = sha256(_bytecode) & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        // Setting the version of the hash
        hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
        // Setting the length
        hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224);
    }

    /// @notice Validates the format of the given bytecode hash.
    /// @dev Due to the specification of the L2 bytecode hash, not every 32 bytes could be a legit bytecode hash.
    /// @dev The function reverts on invalid bytecode hash format.
    /// @param _bytecodeHash The hash of the bytecode to validate.
    function validateBytecodeHash(bytes32 _bytecodeHash) internal pure {
        uint8 version = uint8(_bytecodeHash[0]);
        // Incorrectly formatted bytecodeHash
        if (version != 1 || _bytecodeHash[1] != bytes1(0)) {
            revert MalformedBytecode(BytecodeError.Version);
        }

        // Code length in words must be odd
        if (bytecodeLen(_bytecodeHash) % 2 == 0) {
            revert MalformedBytecode(BytecodeError.WordsMustBeOdd);
        }
    }

    /// @notice Returns the length of the bytecode associated with the given hash.
    /// @param _bytecodeHash The hash of the bytecode.
    /// @return codeLengthInWords The length of the bytecode in words.
    function bytecodeLen(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
        codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
    }

    /// @notice Computes the create2 address for a Layer 2 contract.
    /// @param _sender The address of the sender.
    /// @param _salt The salt value to use in the create2 address computation.
    /// @param _bytecodeHash The contract bytecode hash.
    /// @param _constructorInputHash The hash of the constructor input data.
    /// @return The create2 address of the contract.
    /// NOTE: L2 create2 derivation is different from L1 derivation!
    function computeCreate2Address(
        address _sender,
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes32 _constructorInputHash
    ) internal pure returns (address) {
        bytes32 senderBytes = bytes32(uint256(uint160(_sender)));
        bytes32 data = keccak256(
            // solhint-disable-next-line func-named-parameters
            bytes.concat(CREATE2_PREFIX, senderBytes, _salt, _bytecodeHash, _constructorInputHash)
        );

        return address(uint160(uint256(data)));
    }

    /// @notice Calculates the address of a deployed contract via create
    /// @param _sender The account that deploys the contract.
    /// @param _senderNonce The deploy nonce of the sender's account.
    /// NOTE: L2 create derivation is different from L1 derivation!
    function computeCreateAddress(address _sender, uint256 _senderNonce) internal pure returns (address) {
        // No collision is possible with the Ethereum's CREATE, since
        // the prefix begins with 0x63....
        bytes32 hash = keccak256(
            bytes.concat(CREATE_PREFIX, bytes32(uint256(uint160(_sender))), bytes32(_senderNonce))
        );

        return address(uint160(uint256(hash)));
    }

    /// @notice Hashes the L2 bytecodes and returns them in the format in which they are processed by the bootloader
    function hashFactoryDeps(bytes[] memory _factoryDeps) internal pure returns (uint256[] memory hashedFactoryDeps) {
        uint256 factoryDepsLen = _factoryDeps.length;
        hashedFactoryDeps = new uint256[](factoryDepsLen);
        for (uint256 i = 0; i < factoryDepsLen; i = i.uncheckedInc()) {
            bytes32 hashedBytecode = hashL2Bytecode(_factoryDeps[i]);

            // Store the resulting hash sequentially in words.
            assembly {
                mstore(add(hashedFactoryDeps, mul(add(i, 1), 32)), hashedBytecode)
            }
        }
    }
}

// SPDX-License-Identifier: Apache-2.0

/*
 * Copyright 2019-2021, Offchain Labs, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

library AddressAliasHelper {
    uint160 private constant offset = uint160(0x1111000000000000000000000000000000001111);

    /// @notice Utility function converts the address that submitted a tx
    /// to the inbox on L1 to the msg.sender viewed on L2
    /// @param l1Address the address in the L1 that triggered the tx to L2
    /// @return l2Address L2 address as viewed in msg.sender
    function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
        unchecked {
            l2Address = address(uint160(l1Address) + offset);
        }
    }

    /// @notice Utility function that converts the msg.sender viewed on L2 to the
    /// address that submitted a tx to the inbox on L1
    /// @param l2Address L2 address as viewed in msg.sender
    /// @return l1Address the address in the L1 that triggered the tx to L2
    function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
        unchecked {
            l1Address = address(uint160(l2Address) - offset);
        }
    }

    /// @notice Utility function used to calculate the correct refund recipient
    /// @param _refundRecipient the address that should receive the refund
    /// @param _originalCaller the address that triggered the tx to L2
    /// @return _recipient the corrected address that should receive the refund
    function actualRefundRecipient(
        address _refundRecipient,
        address _originalCaller
    ) internal view returns (address _recipient) {
        if (_refundRecipient == address(0)) {
            // If the `_refundRecipient` is not provided, we use the `_originalCaller` as the recipient.
            // solhint-disable avoid-tx-origin
            // slither-disable-next-line tx-origin
            _recipient = _originalCaller == tx.origin
                ? _originalCaller
                : AddressAliasHelper.applyL1ToL2Alias(_originalCaller);
            // solhint-enable avoid-tx-origin
        } else if (_refundRecipient.code.length > 0) {
            // If the `_refundRecipient` is a smart contract, we apply the L1 to L2 alias to prevent foot guns.
            _recipient = AddressAliasHelper.applyL1ToL2Alias(_refundRecipient);
        } else {
            _recipient = _refundRecipient;
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {ZKChainStorage} from "../ZKChainStorage.sol";
import {ReentrancyGuard} from "../../../common/ReentrancyGuard.sol";
import {PriorityQueue} from "../../libraries/PriorityQueue.sol";
import {PriorityTree} from "../../libraries/PriorityTree.sol";
import {NotSettlementLayer} from "../../L1StateTransitionErrors.sol";
import {Unauthorized} from "../../../common/L1ContractErrors.sol";

/// @title Base contract containing functions accessible to the other facets.
/// @author Matter Labs
/// @custom:security-contact [email protected]
contract ZKChainBase is ReentrancyGuard {
    using PriorityQueue for PriorityQueue.Queue;
    using PriorityTree for PriorityTree.Tree;

    // slither-disable-next-line uninitialized-state
    ZKChainStorage internal s;

    /// @notice Checks that the message sender is an active admin
    modifier onlyAdmin() {
        if (msg.sender != s.admin) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    /// @notice Checks if validator is active
    modifier onlyValidator() {
        if (!s.validators[msg.sender]) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    modifier onlyChainTypeManager() {
        if (msg.sender != s.chainTypeManager) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    modifier onlyBridgehub() {
        if (msg.sender != s.bridgehub) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    modifier onlyAdminOrChainTypeManager() {
        if (msg.sender != s.admin && msg.sender != s.chainTypeManager) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    modifier onlyValidatorOrChainTypeManager() {
        if (!s.validators[msg.sender] && msg.sender != s.chainTypeManager) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    modifier onlySettlementLayer() {
        if (s.settlementLayer != address(0)) {
            revert NotSettlementLayer();
        }
        _;
    }

    modifier onlySelf() {
        if (msg.sender != address(this)) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    /// @notice Returns whether the priority queue is still active, i.e.
    /// the chain has not processed all transactions from it
    function _isPriorityQueueActive() internal view returns (bool) {
        return s.priorityQueue.getFirstUnprocessedPriorityTx() < s.priorityTree.startIndex;
    }

    /// @notice Ensures that the queue is deactivated. Should be invoked
    /// whenever the chain migrates to another settlement layer.
    function _forceDeactivateQueue() internal {
        // We double check whether it is still active mainly to prevent
        // overriding `tail`/`head` on L1 deployment.
        if (_isPriorityQueueActive()) {
            uint256 startIndex = s.priorityTree.startIndex;
            s.priorityQueue.head = startIndex;
            s.priorityQueue.tail = startIndex;
        }
    }

    function _getTotalPriorityTxs() internal view returns (uint256) {
        if (_isPriorityQueueActive()) {
            return s.priorityQueue.getTotalPriorityTxs();
        } else {
            return s.priorityTree.getTotalPriorityTxs();
        }
    }
}

File 18 of 41 : Config.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @dev `keccak256("")`
bytes32 constant EMPTY_STRING_KECCAK = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;

/// @dev Bytes in raw L2 log
/// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBatch, address sender,
/// bytes32 key, bytes32 value)
uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88;

/// @dev The maximum length of the bytes array with L2 -> L1 logs
uint256 constant MAX_L2_TO_L1_LOGS_COMMITMENT_BYTES = 4 + L2_TO_L1_LOG_SERIALIZE_SIZE * 512;

/// @dev The value of default leaf hash for L2 -> L1 logs Merkle tree
/// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree
/// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))`
bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba;

bytes32 constant DEFAULT_L2_LOGS_TREE_ROOT_HASH = bytes32(0);

/// @dev Denotes the type of the ZKsync transaction that came from L1.
uint256 constant PRIORITY_OPERATION_L2_TX_TYPE = 255;

/// @dev Denotes the type of the ZKsync transaction that is used for system upgrades.
uint256 constant SYSTEM_UPGRADE_L2_TX_TYPE = 254;

/// @dev The maximal allowed difference between protocol minor versions in an upgrade. The 100 gap is needed
/// in case a protocol version has been tested on testnet, but then not launched on mainnet, e.g.
/// due to a bug found.
/// We are allowed to jump at most 100 minor versions at a time. The major version is always expected to be 0.
uint256 constant MAX_ALLOWED_MINOR_VERSION_DELTA = 100;

/// @dev The amount of time in seconds the validator has to process the priority transaction
/// NOTE: The constant is set to zero for the Alpha release period
uint256 constant PRIORITY_EXPIRATION = 0 days;

/// @dev Timestamp - seconds since unix epoch.
uint256 constant COMMIT_TIMESTAMP_NOT_OLDER = 3 days;

/// @dev Maximum available error between real commit batch timestamp and analog used in the verifier (in seconds)
/// @dev Must be used cause miner's `block.timestamp` value can differ on some small value (as we know - 12 seconds)
uint256 constant COMMIT_TIMESTAMP_APPROXIMATION_DELTA = 1 hours;

/// @dev Shift to apply to verify public input before verifying.
uint256 constant PUBLIC_INPUT_SHIFT = 32;

/// @dev The maximum number of L2 gas that a user can request for an L2 transaction
uint256 constant MAX_GAS_PER_TRANSACTION = 80_000_000;

/// @dev Even though the price for 1 byte of pubdata is 16 L1 gas, we have a slightly increased
/// value.
uint256 constant L1_GAS_PER_PUBDATA_BYTE = 17;

/// @dev The intrinsic cost of the L1->l2 transaction in computational L2 gas
uint256 constant L1_TX_INTRINSIC_L2_GAS = 167_157;

/// @dev The intrinsic cost of the L1->l2 transaction in pubdata
uint256 constant L1_TX_INTRINSIC_PUBDATA = 88;

/// @dev The minimal base price for L1 transaction
uint256 constant L1_TX_MIN_L2_GAS_BASE = 173_484;

/// @dev The number of L2 gas the transaction starts costing more with each 544 bytes of encoding
uint256 constant L1_TX_DELTA_544_ENCODING_BYTES = 1656;

/// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency
uint256 constant L1_TX_DELTA_FACTORY_DEPS_L2_GAS = 2473;

/// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency
uint256 constant L1_TX_DELTA_FACTORY_DEPS_PUBDATA = 64;

/// @dev The number of pubdata an L1->L2 transaction requires with each new factory dependency
uint256 constant MAX_NEW_FACTORY_DEPS = 64;

/// @dev The L2 gasPricePerPubdata required to be used in bridges.
uint256 constant REQUIRED_L2_GAS_PRICE_PER_PUBDATA = 800;

/// @dev The mask which should be applied to the packed batch and L2 block timestamp in order
/// to obtain the L2 block timestamp. Applying this mask is equivalent to calculating modulo 2**128
uint256 constant PACKED_L2_BLOCK_TIMESTAMP_MASK = 0xffffffffffffffffffffffffffffffff;

/// @dev Address of the point evaluation precompile used for EIP-4844 blob verification.
address constant POINT_EVALUATION_PRECOMPILE_ADDR = address(0x0A);

/// @dev The overhead for a transaction slot in L2 gas.
/// It is roughly equal to 80kk/MAX_TRANSACTIONS_IN_BATCH, i.e. how many gas would an L1->L2 transaction
/// need to pay to compensate for the batch being closed.
/// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate
/// the operator in case the batch is closed because of tx slots filling up.
uint256 constant TX_SLOT_OVERHEAD_L2_GAS = 10000;

/// @dev The overhead for each byte of the bootloader memory that the encoding of the transaction.
/// It is roughly equal to 80kk/BOOTLOADER_MEMORY_FOR_TXS, i.e. how many gas would an L1->L2 transaction
/// need to pay to compensate for the batch being closed.
/// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate
/// the operator in case the batch is closed because of the memory for transactions being filled up.
uint256 constant MEMORY_OVERHEAD_GAS = 10;

/// @dev The maximum gas limit for a priority transaction in L2.
uint256 constant PRIORITY_TX_MAX_GAS_LIMIT = 72_000_000;

/// @dev the address used to identify eth as the base token for chains.
address constant ETH_TOKEN_ADDRESS = address(1);

/// @dev the value returned in bridgehubDeposit in the TwoBridges function.
bytes32 constant TWO_BRIDGES_MAGIC_VALUE = bytes32(uint256(keccak256("TWO_BRIDGES_MAGIC_VALUE")) - 1);

/// @dev https://eips.ethereum.org/EIPS/eip-1352
address constant BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS = address(uint160(type(uint16).max));

/// @dev the maximum number of supported chains, this is an arbitrary limit.
/// @dev Note, that in case of a malicious Bridgehub admin, the total number of chains
/// can be up to 2 times higher. This may be possible, in case the old ChainTypeManager
/// had `100` chains and these were migrated to the Bridgehub only after `MAX_NUMBER_OF_ZK_CHAINS`
/// were added to the bridgehub via creation of new chains.
uint256 constant MAX_NUMBER_OF_ZK_CHAINS = 100;

/// @dev Used as the `msg.sender` for transactions that relayed via a settlement layer.
address constant SETTLEMENT_LAYER_RELAY_SENDER = address(uint160(0x1111111111111111111111111111111111111111));

/// @dev The metadata version that is supported by the ZK Chains to prove that an L2->L1 log was included in a batch.
uint256 constant SUPPORTED_PROOF_METADATA_VERSION = 1;

/// @dev The virtual address of the L1 settlement layer.
address constant L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS = address(
    uint160(uint256(keccak256("L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS")) - 1)
);

struct PriorityTreeCommitment {
    uint256 nextLeafIndex;
    uint256 startIndex;
    uint256 unprocessedIndex;
    bytes32[] sides;
}

// Info that allows to restore a chain.
struct ZKChainCommitment {
    /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch
    /// (batch 0 is genesis)
    uint256 totalBatchesExecuted;
    /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch
    uint256 totalBatchesVerified;
    /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed
    /// batch
    uint256 totalBatchesCommitted;
    /// @notice The hash of the L2 system contracts ugpgrade transaction.
    /// @dev It is non zero if the migration happens while the upgrade is not yet finalized.
    bytes32 l2SystemContractsUpgradeTxHash;
    /// @notice The batch when the system contracts upgrade transaction was executed.
    /// @dev It is non-zero if the migration happens while the batch where the upgrade tx was present
    /// has not been finalized (executed) yet.
    uint256 l2SystemContractsUpgradeBatchNumber;
    /// @notice The hashes of the batches that are needed to keep the blockchain working.
    /// @dev The length of the array is equal to the `totalBatchesCommitted - totalBatchesExecuted + 1`, i.e. we need
    /// to store all the unexecuted batches' hashes + 1 latest executed one.
    bytes32[] batchHashes;
    /// @notice Commitment to the priority merkle tree.
    PriorityTreeCommitment priorityTree;
    /// @notice Whether a chain is a permanent rollup.
    bool isPermanentRollup;
}

/// @dev Used as the `msg.sender` for system service transactions.
address constant SERVICE_TRANSACTION_SENDER = address(uint160(0xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF));

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @dev the offset for the system contracts
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15

/// @dev The offset from which the built-in, but user space contracts are located.
uint160 constant USER_CONTRACTS_OFFSET = 0x10000; // 2^16

/// @dev The formal address of the initial program of the system: the bootloader
address constant L2_BOOTLOADER_ADDRESS = address(SYSTEM_CONTRACTS_OFFSET + 0x01);

/// @dev The address of the known code storage system contract
address constant L2_KNOWN_CODE_STORAGE_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x04);

/// @dev The address of the L2 deployer system contract.
address constant L2_DEPLOYER_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x06);

/// @dev The special reserved L2 address. It is located in the system contracts space but doesn't have deployed
/// bytecode.
/// @dev The L2 deployer system contract allows changing bytecodes on any address if the `msg.sender` is this address.
/// @dev So, whenever the governor wants to redeploy system contracts, it just initiates the L1 upgrade call deployer
/// system contract
/// via the L1 -> L2 transaction with `sender == L2_FORCE_DEPLOYER_ADDR`. For more details see the
/// `diamond-initializers` contracts.
address constant L2_FORCE_DEPLOYER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x07);

/// @dev The address of the special smart contract that can send arbitrary length message as an L2 log
IL2ToL1Messenger constant L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR = IL2ToL1Messenger(
    address(SYSTEM_CONTRACTS_OFFSET + 0x08)
);

/// @dev The address of the eth token system contract
address constant L2_BASE_TOKEN_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0a);

/// @dev The address of the context system contract
address constant L2_SYSTEM_CONTEXT_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0b);

/// @dev The address of the pubdata chunk publisher contract
address constant L2_PUBDATA_CHUNK_PUBLISHER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x11);

/// @dev The address used to execute complex upgragedes, also used for the genesis upgrade
address constant L2_COMPLEX_UPGRADER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0f);

/// @dev the address of the msg value system contract
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);

/// @dev The address used to execute the genesis upgrade
address constant L2_GENESIS_UPGRADE_ADDR = address(USER_CONTRACTS_OFFSET + 0x01);

/// @dev The address of the L2 bridge hub system contract, used to start L1->L2 transactions
address constant L2_BRIDGEHUB_ADDR = address(USER_CONTRACTS_OFFSET + 0x02);

/// @dev the address of the l2 asset router.
address constant L2_ASSET_ROUTER_ADDR = address(USER_CONTRACTS_OFFSET + 0x03);

/// @dev An l2 system contract address, used in the assetId calculation for native assets.
/// This is needed for automatic bridging, i.e. without deploying the AssetHandler contract,
/// if the assetId can be calculated with this address then it is in fact an NTV asset
address constant L2_NATIVE_TOKEN_VAULT_ADDR = address(USER_CONTRACTS_OFFSET + 0x04);

/// @dev the address of the l2 asset router.
address constant L2_MESSAGE_ROOT_ADDR = address(USER_CONTRACTS_OFFSET + 0x05);

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Smart contract for sending arbitrary length messages to L1
 * @dev by default ZkSync can send fixed-length messages on L1.
 * A fixed length message has 4 parameters `senderAddress`, `isService`, `key`, `value`,
 * the first one is taken from the context, the other three are chosen by the sender.
 * @dev To send a variable-length message we use this trick:
 * - This system contract accepts an arbitrary length message and sends a fixed length message with
 * parameters `senderAddress == this`, `isService == true`, `key == msg.sender`, `value == keccak256(message)`.
 * - The contract on L1 accepts all sent messages and if the message came from this system contract
 * it requires that the preimage of `value` be provided.
 */
interface IL2ToL1Messenger {
    /// @notice Sends an arbitrary length message to L1.
    /// @param _message The variable length message to be sent to L1.
    /// @return Returns the keccak256 hashed value of the message.
    function sendToL1(bytes calldata _message) external returns (bytes32);
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {IL1Nullifier} from "../interfaces/IL1Nullifier.sol";
import {INativeTokenVault} from "../ntv/INativeTokenVault.sol";
import {IAssetRouterBase} from "./IAssetRouterBase.sol";
import {L2TransactionRequestTwoBridgesInner} from "../../bridgehub/IBridgehub.sol";
import {IL1SharedBridgeLegacy} from "../interfaces/IL1SharedBridgeLegacy.sol";
import {IL1ERC20Bridge} from "../interfaces/IL1ERC20Bridge.sol";

/// @title L1 Bridge contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IL1AssetRouter is IAssetRouterBase, IL1SharedBridgeLegacy {
    event BridgehubMintData(bytes bridgeMintData);

    event BridgehubDepositFinalized(
        uint256 indexed chainId,
        bytes32 indexed txDataHash,
        bytes32 indexed l2DepositTxHash
    );

    event ClaimedFailedDepositAssetRouter(uint256 indexed chainId, bytes32 indexed assetId, bytes assetData);

    event AssetDeploymentTrackerSet(
        bytes32 indexed assetId,
        address indexed assetDeploymentTracker,
        bytes32 indexed additionalData
    );

    event LegacyDepositInitiated(
        uint256 indexed chainId,
        bytes32 indexed l2DepositTxHash,
        address indexed from,
        address to,
        address l1Token,
        uint256 amount
    );

    /// @notice Initiates a deposit by locking funds on the contract and sending the request
    /// of processing an L2 transaction where tokens would be minted.
    /// @dev If the token is bridged for the first time, the L2 token contract will be deployed. Note however, that the
    /// newly-deployed token does not support any custom logic, i.e. rebase tokens' functionality is not supported.
    /// @param _originalCaller The `msg.sender` address from the external call that initiated current one.
    /// @param _l2Receiver The account address that should receive funds on L2.
    /// @param _l1Token The L1 token address which is deposited.
    /// @param _amount The total amount of tokens to be bridged.
    /// @param _l2TxGasLimit The L2 gas limit to be used in the corresponding L2 transaction.
    /// @param _l2TxGasPerPubdataByte The gasPerPubdataByteLimit to be used in the corresponding L2 transaction.
    /// @param _refundRecipient The address on L2 that will receive the refund for the transaction.
    /// @dev If the L2 deposit finalization transaction fails, the `_refundRecipient` will receive the `_l2Value`.
    /// Please note, the contract may change the refund recipient's address to eliminate sending funds to addresses
    /// out of control.
    /// - If `_refundRecipient` is a contract on L1, the refund will be sent to the aliased `_refundRecipient`.
    /// - If `_refundRecipient` is set to `address(0)` and the sender has NO deployed bytecode on L1, the refund will
    /// be sent to the `msg.sender` address.
    /// - If `_refundRecipient` is set to `address(0)` and the sender has deployed bytecode on L1, the refund will be
    /// sent to the aliased `msg.sender` address.
    /// @dev The address aliasing of L1 contracts as refund recipient on L2 is necessary to guarantee that the funds
    /// are controllable through the Mailbox, since the Mailbox applies address aliasing to the from address for the
    /// L2 tx if the L1 msg.sender is a contract. Without address aliasing for L1 contracts as refund recipients they
    /// would not be able to make proper L2 tx requests through the Mailbox to use or withdraw the funds from L2, and
    /// the funds would be lost.
    /// @return txHash The L2 transaction hash of deposit finalization.
    function depositLegacyErc20Bridge(
        address _originalCaller,
        address _l2Receiver,
        address _l1Token,
        uint256 _amount,
        uint256 _l2TxGasLimit,
        uint256 _l2TxGasPerPubdataByte,
        address _refundRecipient
    ) external payable returns (bytes32 txHash);

    function L1_NULLIFIER() external view returns (IL1Nullifier);

    function L1_WETH_TOKEN() external view returns (address);

    function nativeTokenVault() external view returns (INativeTokenVault);

    function setAssetDeploymentTracker(bytes32 _assetRegistrationData, address _assetDeploymentTracker) external;

    function setNativeTokenVault(INativeTokenVault _nativeTokenVault) external;

    function setL1Erc20Bridge(IL1ERC20Bridge _legacyBridge) external;

    /// @notice Withdraw funds from the initiated deposit, that failed when finalizing on L2.
    /// @param _chainId The ZK chain id to which the deposit was initiated.
    /// @param _depositSender The address of the entity that initiated the deposit.
    /// @param _assetId The unique identifier of the deposited L1 token.
    /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information.
    /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system.
    function bridgeRecoverFailedTransfer(
        uint256 _chainId,
        address _depositSender,
        bytes32 _assetId,
        bytes calldata _assetData
    ) external;

    /// @dev Withdraw funds from the initiated deposit, that failed when finalizing on L2.
    /// @param _chainId The ZK chain id to which deposit was initiated.
    /// @param _depositSender The address of the entity that initiated the deposit.
    /// @param _assetId The unique identifier of the deposited L1 token.
    /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information.
    /// @param _l2TxHash The L2 transaction hash of the failed deposit finalization.
    /// @param _l2BatchNumber The L2 batch number where the deposit finalization was processed.
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message.
    /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent.
    /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction with deposit finalization.
    /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system.
    function bridgeRecoverFailedTransfer(
        uint256 _chainId,
        address _depositSender,
        bytes32 _assetId,
        bytes memory _assetData,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    /// @notice Transfers funds to Native Token Vault, if the asset is registered with it. Does nothing for ETH or non-registered tokens.
    /// @dev assetId is not the padded address, but the correct encoded id (NTV stores respective format for IDs)
    /// @param _amount The asset amount to be transferred to native token vault.
    /// @param _originalCaller The `msg.sender` address from the external call that initiated current one.
    function transferFundsToNTV(bytes32 _assetId, uint256 _amount, address _originalCaller) external returns (bool);

    /// @notice Finalize the withdrawal and release funds
    /// @param _chainId The chain ID of the transaction to check
    /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message
    /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent
    /// @param _message The L2 withdraw data, stored in an L2 -> L1 message
    /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization
    function finalizeWithdrawal(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;

    /// @notice Initiates a transfer transaction within Bridgehub, used by `requestL2TransactionTwoBridges`.
    /// @param _chainId The chain ID of the ZK chain to which deposit.
    /// @param _originalCaller The `msg.sender` address from the external call that initiated current one.
    /// @param _value The `msg.value` on the target chain tx.
    /// @param _data The calldata for the second bridge deposit.
    /// @return request The data used by the bridgehub to create L2 transaction request to specific ZK chain.
    /// @dev Data has the following abi encoding for legacy deposits:
    /// address _l1Token,
    /// uint256 _amount,
    /// address _l2Receiver
    /// for new deposits:
    /// bytes32 _assetId,
    /// bytes _transferData
    function bridgehubDeposit(
        uint256 _chainId,
        address _originalCaller,
        uint256 _value,
        bytes calldata _data
    ) external payable returns (L2TransactionRequestTwoBridgesInner memory request);

    /// @notice Generates a calldata for calling the deposit finalization on the L2 native token contract.
    // / @param _chainId The chain ID of the ZK chain to which deposit.
    /// @param _sender The address of the deposit initiator.
    /// @param _assetId The deposited asset ID.
    /// @param _assetData The encoded data, which is used by the asset handler to determine L2 recipient and amount. Might include extra information.
    /// @return Returns calldata used on ZK chain.
    function getDepositCalldata(
        address _sender,
        bytes32 _assetId,
        bytes memory _assetData
    ) external view returns (bytes memory);

    /// @notice Allows bridgehub to acquire mintValue for L1->L2 transactions.
    /// @dev If the corresponding L2 transaction fails, refunds are issued to a refund recipient on L2.
    /// @param _chainId The chain ID of the ZK chain to which deposit.
    /// @param _assetId The deposited asset ID.
    /// @param _originalCaller The `msg.sender` address from the external call that initiated current one.
    /// @param _amount The total amount of tokens to be bridged.
    function bridgehubDepositBaseToken(
        uint256 _chainId,
        bytes32 _assetId,
        address _originalCaller,
        uint256 _amount
    ) external payable;

    /// @notice Routes the confirmation to nullifier for backward compatibility.
    /// @notice Confirms the acceptance of a transaction by the Mailbox, as part of the L2 transaction process within Bridgehub.
    /// This function is utilized by `requestL2TransactionTwoBridges` to validate the execution of a transaction.
    /// @param _chainId The chain ID of the ZK chain to which confirm the deposit.
    /// @param _txDataHash The keccak256 hash of 0x01 || abi.encode(bytes32, bytes) to identify deposits.
    /// @param _txHash The hash of the L1->L2 transaction to confirm the deposit.
    function bridgehubConfirmL2Transaction(uint256 _chainId, bytes32 _txDataHash, bytes32 _txHash) external;

    function isWithdrawalFinalized(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex
    ) external view returns (bool);
}

File 21 of 41 : L1ContractErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;

// 0x5ecf2d7a
error AccessToFallbackDenied(address target, address invoker);
// 0x3995f750
error AccessToFunctionDenied(address target, bytes4 selector, address invoker);
// 0x6c167909
error OnlySelfAllowed();
// 0x52e22c98
error RestrictionWasNotPresent(address restriction);
// 0xf126e113
error RestrictionWasAlreadyPresent(address restriction);
// 0x3331e9c0
error CallNotAllowed(bytes call);
// 0xf6fd7071
error RemovingPermanentRestriction();
// 0xfcb9b2e1
error UnallowedImplementation(bytes32 implementationHash);
// 0x0dfb42bf
error AddressAlreadySet(address addr);
// 0x86bb51b8
error AddressHasNoCode(address);
// 0x1f73225f
error AddressMismatch(address expected, address supplied);
// 0x5e85ae73
error AmountMustBeGreaterThanZero();
// 0xfde974f4
error AssetHandlerDoesNotExist(bytes32 assetId);
// 0x1294e9e1
error AssetIdMismatch(bytes32 expected, bytes32 supplied);
// 0xfe919e28
error AssetIdAlreadyRegistered();
// 0x0bfcef28
error AlreadyWhitelisted(address);
// 0x04a0b7e9
error AssetIdNotSupported(bytes32 assetId);
// 0x6ef9a972
error BaseTokenGasPriceDenominatorNotSet();
// 0x55ad3fd3
error BatchHashMismatch(bytes32 expected, bytes32 actual);
// 0x2078a6a0
error BatchNotExecuted(uint256 batchNumber);
// 0xbd4455ff
error BatchNumberMismatch(uint256 expectedBatchNumber, uint256 providedBatchNumber);
// 0x6cf12312
error BridgeHubAlreadyRegistered();
// 0xdb538614
error BridgeMintNotImplemented();
// 0xe85392f9
error CanOnlyProcessOneBatch();
// 0x00c6ead2
error CantExecuteUnprovenBatches();
// 0xe18cb383
error CantRevertExecutedBatch();
// 0x24591d89
error ChainIdAlreadyExists();
// 0x717a1656
error ChainIdCantBeCurrentChain();
// 0xa179f8c9
error ChainIdMismatch();
// 0x23f3c357
error ChainIdNotRegistered(uint256 chainId);
// 0x8f620a06
error ChainIdTooBig();
// 0xf7a01e4d
error DelegateCallFailed(bytes returnData);
// 0x0a8ed92c
error DenominatorIsZero();
// 0xb4f54111
error DeployFailed();
// 0x138ee1a3
error DeployingBridgedTokenForNativeToken();
// 0xc7c9660f
error DepositDoesNotExist();
// 0xad2fa98e
error DepositExists();
// 0x0e7ee319
error DiamondAlreadyFrozen();
// 0xa7151b9a
error DiamondNotFrozen();
// 0x7138356f
error EmptyAddress();
// 0x2d4d012f
error EmptyAssetId();
// 0x1c25715b
error EmptyBytes32();
// 0x95b66fe9
error EmptyDeposit();
// 0x627e0872
error ETHDepositNotSupported();
// 0xac4a3f98
error FacetExists(bytes4 selector, address);
// 0xc91cf3b1
error GasPerPubdataMismatch();
// 0x6d4a7df8
error GenesisBatchCommitmentZero();
// 0x7940c83f
error GenesisBatchHashZero();
// 0xb4fc6835
error GenesisIndexStorageZero();
// 0x3a1a8589
error GenesisUpgradeZero();
// 0xd356e6ba
error HashedLogIsDefault();
// 0x0b08d5be
error HashMismatch(bytes32 expected, bytes32 actual);
// 0x601b6882
error ZKChainLimitReached();
// 0xdd381a4c
error IncorrectBridgeHubAddress(address bridgehub);
// 0x826fb11e
error InsufficientChainBalance();
// 0xcbd9d2e0
error InvalidCaller(address);
// 0x4fbe5dba
error InvalidDelay();
// 0xc1780bd6
error InvalidLogSender(address sender, uint256 logKey);
// 0xd8e9405c
error InvalidNumberOfBlobs(uint256 expected, uint256 numCommitments, uint256 numHashes);
// 0x09bde339
error InvalidProof();
// 0x5428eae7
error InvalidProtocolVersion();
// 0x6f1cf752
error InvalidPubdataPricingMode();
// 0x12ba286f
error InvalidSelector(bytes4 func);
// 0x0214acb6
error InvalidUpgradeTxn(UpgradeTxVerifyParam);
// 0xfb5c22e6
error L2TimestampTooBig();
// 0x97e1359e
error L2WithdrawalMessageWrongLength(uint256 messageLen);
// 0xe37d2c02
error LengthIsNotDivisibleBy32(uint256 length);
// 0x1b6825bb
error LogAlreadyProcessed(uint8);
// 0xcea34703
error MalformedBytecode(BytecodeError);
// 0x9bb54c35
error MerkleIndexOutOfBounds();
// 0x8e23ac1a
error MerklePathEmpty();
// 0x1c500385
error MerklePathOutOfBounds();
// 0x3312a450
error MigrationPaused();
// 0xfa44b527
error MissingSystemLogs(uint256 expected, uint256 actual);
// 0x4a094431
error MsgValueMismatch(uint256 expectedMsgValue, uint256 providedMsgValue);
// 0xb385a3da
error MsgValueTooLow(uint256 required, uint256 provided);
// 0x79cc2d22
error NoCallsProvided();
// 0xa6fef710
error NoFunctionsForDiamondCut();
// 0xcab098d8
error NoFundsTransferred();
// 0xc21b1ab7
error NonEmptyCalldata();
// 0x536ec84b
error NonEmptyMsgValue();
// 0xd018e08e
error NonIncreasingTimestamp();
// 0x0105f9c0
error NonSequentialBatch();
// 0x0ac76f01
error NonSequentialVersion();
// 0xdd7e3621
error NotInitializedReentrancyGuard();
// 0xdf17e316
error NotWhitelisted(address);
// 0xf3ed9dfa
error OnlyEraSupported();
// 0x1a21feed
error OperationExists();
// 0xeda2fbb1
error OperationMustBePending();
// 0xe1c1ff37
error OperationMustBeReady();
// 0xb926450e
error OriginChainIdNotFound();
// 0x9b48e060
error PreviousOperationNotExecuted();
// 0xd5a99014
error PriorityOperationsRollingHashMismatch();
// 0x1a4d284a
error PriorityTxPubdataExceedsMaxPubDataPerBatch();
// 0xa461f651
error ProtocolIdMismatch(uint256 expectedProtocolVersion, uint256 providedProtocolId);
// 0x64f94ec2
error ProtocolIdNotGreater();
// 0x959f26fb
error PubdataGreaterThanLimit(uint256 limit, uint256 length);
// 0x63c36549
error QueueIsEmpty();
// 0xab143c06
error Reentrancy();
// 0x667d17de
error RemoveFunctionFacetAddressNotZero(address facet);
// 0xa2d4b16c
error RemoveFunctionFacetAddressZero();
// 0x3580370c
error ReplaceFunctionFacetAddressZero();
// 0x9a67c1cb
error RevertedBatchNotAfterNewLastBatch();
// 0xd3b6535b
error SelectorsMustAllHaveSameFreezability();
// 0xd7a6b5e6
error SharedBridgeValueNotSet(SharedBridgeKey);
// 0x856d5b77
error SharedBridgeNotSet();
// 0xdf3a8fdd
error SlotOccupied();
// 0xec273439
error CTMAlreadyRegistered();
// 0xc630ef3c
error CTMNotRegistered();
// 0xae43b424
error SystemLogsSizeTooBig();
// 0x08753982
error TimeNotReached(uint256 expectedTimestamp, uint256 actualTimestamp);
// 0x2d50c33b
error TimestampError();
// 0x06439c6b
error TokenNotSupported(address token);
// 0x23830e28
error TokensWithFeesNotSupported();
// 0x76da24b9
error TooManyFactoryDeps();
// 0xf0b4e88f
error TooMuchGas();
// 0x00c5a6a9
error TransactionNotAllowed();
// 0x4c991078
error TxHashMismatch();
// 0x2e311df8
error TxnBodyGasLimitNotEnoughGas();
// 0x8e4a23d6
error Unauthorized(address caller);
// 0xe52478c7
error UndefinedDiamondCutAction();
// 0x6aa39880
error UnexpectedSystemLog(uint256 logKey);
// 0xf093c2e5
error UpgradeBatchNumberIsNotZero();
// 0x084a1449
error UnsupportedEncodingVersion();
// 0x47b3b145
error ValidateTxnNotEnoughGas();
// 0x626ade30
error ValueMismatch(uint256 expected, uint256 actual);
// 0xe1022469
error VerifiedBatchesExceedsCommittedBatches();
// 0xae899454
error WithdrawalAlreadyFinalized();
// 0x750b219c
error WithdrawFailed();
// 0x15e8e429
error WrongMagicValue(uint256 expectedMagicValue, uint256 providedMagicValue);
// 0xd92e233d
error ZeroAddress();
// 0xc84885d4
error ZeroChainId();
// 0x99d8fec9
error EmptyData();
// 0xf3dd1b9c
error UnsupportedCommitBatchEncoding(uint8 version);
// 0xf338f830
error UnsupportedProofBatchEncoding(uint8 version);
// 0x14d2ed8a
error UnsupportedExecuteBatchEncoding(uint8 version);
// 0xd7d93e1f
error IncorrectBatchBounds(
    uint256 processFromExpected,
    uint256 processToExpected,
    uint256 processFromProvided,
    uint256 processToProvided
);
// 0x64107968
error AssetHandlerNotRegistered(bytes32 assetId);
// 0x64846fe4
error NotARestriction(address addr);
// 0xfa5cd00f
error NotAllowed(address addr);
// 0xccdd18d2
error BytecodeAlreadyPublished(bytes32 bytecodeHash);
// 0x25d8333c
error CallerNotTimerAdmin();
// 0x907f8e51
error DeadlineNotYetPassed();
// 0x6eef58d1
error NewDeadlineNotGreaterThanCurrent();
// 0x8b7e144a
error NewDeadlineExceedsMaxDeadline();
// 0x2a5989a0
error AlreadyPermanentRollup();
// 0x92daded2
error InvalidDAForPermanentRollup();
// 0x7a4902ad
error TimerAlreadyStarted();

// 0x09aa9830
error MerklePathLengthMismatch(uint256 pathLength, uint256 expectedLength);

// 0xc33e6128
error MerkleNothingToProve();

// 0xafbb7a4e
error MerkleIndexOrHeightMismatch();

// 0x1b582fcf
error MerkleWrongIndex(uint256 index, uint256 maxNodeNumber);

// 0x485cfcaa
error MerkleWrongLength(uint256 newLeavesLength, uint256 leafNumber);

// 0xce63ce17
error NoCTMForAssetId(bytes32 assetId);
// 0x02181a13
error SettlementLayersMustSettleOnL1();
// 0x1850b46b
error TokenNotLegacy();
// 0x1929b7de
error IncorrectTokenAddressFromNTV(bytes32 assetId, address tokenAddress);
// 0x48c5fa28
error InvalidProofLengthForFinalNode();
// 0xfade089a
error LegacyEncodingUsedForNonL1Token();
// 0xa51fa558
error TokenIsLegacy();
// 0x29963361
error LegacyBridgeUsesNonNativeToken();
// 0x11832de8
error AssetRouterAllowanceNotZero();
// 0xaa5f6180
error BurningNativeWETHNotSupported();
// 0xb20b58ce
error NoLegacySharedBridge();
// 0x8e3ce3cb
error TooHighDeploymentNonce();
// 0x78d2ed02
error ChainAlreadyLive();
// 0x4e98b356
error MigrationsNotPaused();
// 0xf20c5c2a
error WrappedBaseTokenAlreadyRegistered();

// 0xde4c0b96
error InvalidNTVBurnData();
// 0xbe7193d4
error InvalidSystemLogsLength();
// 0x8efef97a
error LegacyBridgeNotSet();
// 0x767eed08
error LegacyMethodForNonL1Token();
// 0xc352bb73
error UnknownVerifierType();
// 0x456f8f7a
error EmptyProofLength();

enum SharedBridgeKey {
    PostUpgradeFirstBatch,
    LegacyBridgeFirstBatch,
    LegacyBridgeLastDepositBatch,
    LegacyBridgeLastDepositTxn
}

enum BytecodeError {
    Version,
    NumberOfWords,
    Length,
    WordsMustBeOdd
}

enum UpgradeTxVerifyParam {
    From,
    To,
    Paymaster,
    Value,
    MaxFeePerGas,
    MaxPriorityFeePerGas,
    Reserved0,
    Reserved1,
    Reserved2,
    Reserved3,
    Signature,
    PaymasterInput,
    ReservedDynamic
}

File 22 of 41 : L1StateTransitionErrors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.21;

// 0x2e89f517
error L1DAValidatorAddressIsZero();

// 0x944bc075
error L2DAValidatorAddressIsZero();

// 0xca1c3cbc
error AlreadyMigrated();

// 0xf05c64c6
error NotChainAdmin(address prevMsgSender, address admin);

// 0xc59d372c
error ProtocolVersionNotUpToDate(uint256 currentProtocolVersion, uint256 protocolVersion);

// 0xedae13f3
error ExecutedIsNotConsistentWithVerified(uint256 batchesExecuted, uint256 batchesVerified);

// 0x712d02d2
error VerifiedIsNotConsistentWithCommitted(uint256 batchesVerified, uint256 batchesCommitted);

// 0xfb1a3b59
error InvalidNumberOfBatchHashes(uint256 batchHashesLength, uint256 expected);

// 0xa840274f
error PriorityQueueNotReady();

// 0x79274f04
error UnsupportedProofMetadataVersion(uint256 metadataVersion);

// 0xa969e486
error LocalRootIsZero();

// 0xbdaf7d42
error LocalRootMustBeZero();

// 0xd0266e26
error NotSettlementLayer();

// 0x32ddf9a2
error NotHyperchain();

// 0x2237c426
error MismatchL2DAValidator();

// 0x2c01a4af
error MismatchNumberOfLayer1Txs(uint256 numberOfLayer1Txs, uint256 expectedLength);

// 0xfbd630b8
error InvalidBatchesDataLength(uint256 batchesDataLength, uint256 priorityOpsDataLength);

// 0x55008233
error PriorityOpsDataLeftPathLengthIsNotZero();

// 0x8be936a9
error PriorityOpsDataRightPathLengthIsNotZero();

// 0x99d44739
error PriorityOpsDataItemHashesLengthIsNotZero();

// 0x885ae069
error OperatorDAInputTooSmall(uint256 operatorDAInputLength, uint256 minAllowedLength);

// 0xbeb96791
error InvalidNumberOfBlobs(uint256 blobsProvided, uint256 maxBlobsSupported);

// 0xd2531c15
error InvalidL2DAOutputHash(bytes32 l2DAValidatorOutputHash);

// 0x04e05fd1
error OnlyOneBlobWithCalldataAllowed();

// 0x2dc9747d
error PubdataInputTooSmall(uint256 pubdataInputLength, uint256 totalBlobsCommitmentSize);

// 0x9044dff9
error PubdataLengthTooBig(uint256 pubdataLength, uint256 totalBlobSizeBytes);

// 0x5513177c
error InvalidPubdataHash(bytes32 fullPubdataHash, bytes32 providedPubdataHash);

// 0x5717f940
error InvalidPubdataSource(uint8 pubdataSource);

// 0x125d99b0
error BlobHashBlobCommitmentMismatchValue();

// 0x7fbff2dd
error L1DAValidatorInvalidSender(address msgSender);

// 0xc06789fa
error InvalidCommitment();

// 0xc866ff2c
error InitialForceDeploymentMismatch(bytes32 forceDeploymentHash, bytes32 initialForceDeploymentHash);

// 0xb325f767
error AdminZero();

// 0x681150be
error OutdatedProtocolVersion(uint256 protocolVersion, uint256 currentProtocolVersion);

// 0x87470e36
error NotL1(uint256 blockChainId);

// 0x90f67ecf
error InvalidStartIndex(uint256 treeStartIndex, uint256 commitmentStartIndex);

// 0x0f67bc0a
error InvalidUnprocessedIndex(uint256 treeUnprocessedIndex, uint256 commitmentUnprocessedIndex);

// 0x30043900
error InvalidNextLeafIndex(uint256 treeNextLeafIndex, uint256 commitmentNextLeafIndex);

// 0xf9ba09d6
error NotAllBatchesExecuted();

// 0x9b53b101
error NotHistoricalRoot();

// 0xc02d3ee3
error ContractNotDeployed();

// 0xd7b2559b
error NotMigrated();

// 0x52595598
error ValL1DAWrongInputLength(uint256 inputLength, uint256 expectedLength);

File 23 of 41 : IZKChainBase.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @title The interface of the ZKsync contract, responsible for the main ZKsync logic.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IZKChainBase {
    /// @return Returns facet name.
    function getName() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {SafeCast} from "@openzeppelin/contracts-v4/utils/math/SafeCast.sol";
import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol";
import {NoFunctionsForDiamondCut, UndefinedDiamondCutAction, AddressHasNoCode, FacetExists, RemoveFunctionFacetAddressZero, SelectorsMustAllHaveSameFreezability, NonEmptyCalldata, ReplaceFunctionFacetAddressZero, RemoveFunctionFacetAddressNotZero, DelegateCallFailed} from "../../common/L1ContractErrors.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice The helper library for managing the EIP-2535 diamond proxy.
library Diamond {
    using UncheckedMath for uint256;
    using SafeCast for uint256;

    /// @dev Magic value that should be returned by diamond cut initialize contracts.
    /// @dev Used to distinguish calls to contracts that were supposed to be used as diamond initializer from other contracts.
    bytes32 internal constant DIAMOND_INIT_SUCCESS_RETURN_VALUE =
        0x33774e659306e47509050e97cb651e731180a42d458212294d30751925c551a2; // keccak256("diamond.zksync.init") - 1

    /// @dev Storage position of `DiamondStorage` structure.
    bytes32 private constant DIAMOND_STORAGE_POSITION =
        0xc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131b; // keccak256("diamond.standard.diamond.storage") - 1;

    event DiamondCut(FacetCut[] facetCuts, address initAddress, bytes initCalldata);

    /// @dev Utility struct that contains associated facet & meta information of selector
    /// @param facetAddress address of the facet which is connected with selector
    /// @param selectorPosition index in `FacetToSelectors.selectors` array, where is selector stored
    /// @param isFreezable denotes whether the selector can be frozen.
    struct SelectorToFacet {
        address facetAddress;
        uint16 selectorPosition;
        bool isFreezable;
    }

    /// @dev Utility struct that contains associated selectors & meta information of facet
    /// @param selectors list of all selectors that belong to the facet
    /// @param facetPosition index in `DiamondStorage.facets` array, where is facet stored
    struct FacetToSelectors {
        bytes4[] selectors;
        uint16 facetPosition;
    }

    /// @notice The structure that holds all diamond proxy associated parameters
    /// @dev According to the EIP-2535 should be stored on a special storage key - `DIAMOND_STORAGE_POSITION`
    /// @param selectorToFacet A mapping from the selector to the facet address and its meta information
    /// @param facetToSelectors A mapping from facet address to its selectors with meta information
    /// @param facets The array of all unique facet addresses that belong to the diamond proxy
    /// @param isFrozen Denotes whether the diamond proxy is frozen and all freezable facets are not accessible
    struct DiamondStorage {
        mapping(bytes4 selector => SelectorToFacet selectorInfo) selectorToFacet;
        mapping(address facetAddress => FacetToSelectors facetInfo) facetToSelectors;
        address[] facets;
        bool isFrozen;
    }

    /// @dev Parameters for diamond changes that touch one of the facets
    /// @param facet The address of facet that's affected by the cut
    /// @param action The action that is made on the facet
    /// @param isFreezable Denotes whether the facet & all their selectors can be frozen
    /// @param selectors An array of unique selectors that belongs to the facet address
    // solhint-disable-next-line gas-struct-packing
    struct FacetCut {
        address facet;
        Action action;
        bool isFreezable;
        bytes4[] selectors;
    }

    /// @dev Structure of the diamond proxy changes
    /// @param facetCuts The set of changes (adding/removing/replacement) of implementation contracts
    /// @param initAddress The address that's delegate called after setting up new facet changes
    /// @param initCalldata Calldata for the delegate call to `initAddress`
    struct DiamondCutData {
        FacetCut[] facetCuts;
        address initAddress;
        bytes initCalldata;
    }

    /// @dev Type of change over diamond: add/replace/remove facets
    enum Action {
        Add,
        Replace,
        Remove
    }

    /// @return diamondStorage The pointer to the storage where all specific diamond proxy parameters stored
    function getDiamondStorage() internal pure returns (DiamondStorage storage diamondStorage) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        assembly {
            diamondStorage.slot := position
        }
    }

    /// @dev Add/replace/remove any number of selectors and optionally execute a function with delegatecall
    /// @param _diamondCut Diamond's facet changes and the parameters to optional initialization delegatecall
    function diamondCut(DiamondCutData memory _diamondCut) internal {
        FacetCut[] memory facetCuts = _diamondCut.facetCuts;
        address initAddress = _diamondCut.initAddress;
        bytes memory initCalldata = _diamondCut.initCalldata;
        uint256 facetCutsLength = facetCuts.length;
        for (uint256 i = 0; i < facetCutsLength; i = i.uncheckedInc()) {
            Action action = facetCuts[i].action;
            address facet = facetCuts[i].facet;
            bool isFacetFreezable = facetCuts[i].isFreezable;
            bytes4[] memory selectors = facetCuts[i].selectors;

            if (selectors.length == 0) {
                revert NoFunctionsForDiamondCut();
            }

            if (action == Action.Add) {
                _addFunctions(facet, selectors, isFacetFreezable);
            } else if (action == Action.Replace) {
                _replaceFunctions(facet, selectors, isFacetFreezable);
            } else if (action == Action.Remove) {
                _removeFunctions(facet, selectors);
            } else {
                revert UndefinedDiamondCutAction();
            }
        }

        _initializeDiamondCut(initAddress, initCalldata);
        emit DiamondCut(facetCuts, initAddress, initCalldata);
    }

    /// @dev Add new functions to the diamond proxy
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _addFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Facet with no code cannot be added.
        // This check also verifies that the facet does not have zero address, since it is the
        // address with which 0x00000000 selector is associated.
        if (_facet.code.length == 0) {
            revert AddressHasNoCode(_facet);
        }

        // Add facet to the list of facets if the facet address is new one
        _saveFacetIfNew(_facet);

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            if (oldFacet.facetAddress != address(0)) {
                revert FacetExists(selector, oldFacet.facetAddress);
            }

            _addOneFunction(_facet, selector, _isFacetFreezable);
        }
    }

    /// @dev Change associated facets to already known function selectors
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _replaceFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Facet with no code cannot be added.
        // This check also verifies that the facet does not have zero address, since it is the
        // address with which 0x00000000 selector is associated.
        if (_facet.code.length == 0) {
            revert AddressHasNoCode(_facet);
        }

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            // it is impossible to replace the facet with zero address
            if (oldFacet.facetAddress == address(0)) {
                revert ReplaceFunctionFacetAddressZero();
            }

            _removeOneFunction(oldFacet.facetAddress, selector);
            // Add facet to the list of facets if the facet address is a new one
            _saveFacetIfNew(_facet);
            _addOneFunction(_facet, selector, _isFacetFreezable);
        }
    }

    /// @dev Remove association with function and facet
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _removeFunctions(address _facet, bytes4[] memory _selectors) private {
        DiamondStorage storage ds = getDiamondStorage();

        // facet address must be zero
        if (_facet != address(0)) {
            revert RemoveFunctionFacetAddressNotZero(_facet);
        }

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            // Can't delete a non-existent facet
            if (oldFacet.facetAddress == address(0)) {
                revert RemoveFunctionFacetAddressZero();
            }

            _removeOneFunction(oldFacet.facetAddress, selector);
        }
    }

    /// @dev Add address to the list of known facets if it is not on the list yet
    /// NOTE: should be called ONLY before adding a new selector associated with the address
    function _saveFacetIfNew(address _facet) private {
        DiamondStorage storage ds = getDiamondStorage();

        uint256 selectorsLength = ds.facetToSelectors[_facet].selectors.length;
        // If there are no selectors associated with facet then save facet as new one
        if (selectorsLength == 0) {
            ds.facetToSelectors[_facet].facetPosition = ds.facets.length.toUint16();
            ds.facets.push(_facet);
        }
    }

    /// @dev Add one function to the already known facet
    /// NOTE: It is expected but NOT enforced that:
    /// - `_facet` is NON-ZERO address
    /// - `_facet` is already stored address in `DiamondStorage.facets`
    /// - `_selector` is NOT associated by another facet
    function _addOneFunction(address _facet, bytes4 _selector, bool _isSelectorFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        uint16 selectorPosition = (ds.facetToSelectors[_facet].selectors.length).toUint16();

        // if selectorPosition is nonzero, it means it is not a new facet
        // so the freezability of the first selector must be matched to _isSelectorFreezable
        // so all the selectors in a facet will have the same freezability
        if (selectorPosition != 0) {
            bytes4 selector0 = ds.facetToSelectors[_facet].selectors[0];
            if (_isSelectorFreezable != ds.selectorToFacet[selector0].isFreezable) {
                revert SelectorsMustAllHaveSameFreezability();
            }
        }

        ds.selectorToFacet[_selector] = SelectorToFacet({
            facetAddress: _facet,
            selectorPosition: selectorPosition,
            isFreezable: _isSelectorFreezable
        });
        ds.facetToSelectors[_facet].selectors.push(_selector);
    }

    /// @dev Remove one associated function with facet
    /// NOTE: It is expected but NOT enforced that `_facet` is NON-ZERO address
    function _removeOneFunction(address _facet, bytes4 _selector) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Get index of `FacetToSelectors.selectors` of the selector and last element of array
        uint256 selectorPosition = ds.selectorToFacet[_selector].selectorPosition;
        uint256 lastSelectorPosition = ds.facetToSelectors[_facet].selectors.length - 1;

        // If the selector is not at the end of the array then move the last element to the selector position
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetToSelectors[_facet].selectors[lastSelectorPosition];

            ds.facetToSelectors[_facet].selectors[selectorPosition] = lastSelector;
            ds.selectorToFacet[lastSelector].selectorPosition = selectorPosition.toUint16();
        }

        // Remove last element from the selectors array
        ds.facetToSelectors[_facet].selectors.pop();

        // Finally, clean up the association with facet
        delete ds.selectorToFacet[_selector];

        // If there are no selectors for facet then remove the facet from the list of known facets
        if (lastSelectorPosition == 0) {
            _removeFacet(_facet);
        }
    }

    /// @dev remove facet from the list of known facets
    /// NOTE: It is expected but NOT enforced that there are no selectors associated with `_facet`
    function _removeFacet(address _facet) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Get index of `DiamondStorage.facets` of the facet and last element of array
        uint256 facetPosition = ds.facetToSelectors[_facet].facetPosition;
        uint256 lastFacetPosition = ds.facets.length - 1;

        // If the facet is not at the end of the array then move the last element to the facet position
        if (facetPosition != lastFacetPosition) {
            address lastFacet = ds.facets[lastFacetPosition];

            ds.facets[facetPosition] = lastFacet;
            ds.facetToSelectors[lastFacet].facetPosition = facetPosition.toUint16();
        }

        // Remove last element from the facets array
        ds.facets.pop();
    }

    /// @dev Delegates call to the initialization address with provided calldata
    /// @dev Used as a final step of diamond cut to execute the logic of the initialization for changed facets
    function _initializeDiamondCut(address _init, bytes memory _calldata) private {
        if (_init == address(0)) {
            // Non-empty calldata for zero address
            if (_calldata.length != 0) {
                revert NonEmptyCalldata();
            }
        } else {
            // Do not check whether `_init` is a contract since later we check that it returns data.
            (bool success, bytes memory data) = _init.delegatecall(_calldata);
            if (!success) {
                // If the returndata is too small, we still want to produce some meaningful error

                if (data.length < 4) {
                    revert DelegateCallFailed(data);
                }

                assembly {
                    revert(add(data, 0x20), mload(data))
                }
            }

            // Check that called contract returns magic value to make sure that contract logic
            // supposed to be used as diamond cut initializer.
            if (data.length != 32) {
                revert DelegateCallFailed(data);
            }
            if (abi.decode(data, (bytes32)) != DIAMOND_INIT_SUCCESS_RETURN_VALUE) {
                revert DelegateCallFailed(data);
            }
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

/// @title L1 Asset Handler contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice Used for any asset handler and called by the L1AssetRouter
interface IL1AssetHandler {
    /// @param _chainId the chainId that the message will be sent to
    /// @param _assetId the assetId of the asset being bridged
    /// @param _depositSender the address of the entity that initiated the deposit.
    /// @param _data the actual data specified for the function
    function bridgeRecoverFailedTransfer(
        uint256 _chainId,
        bytes32 _assetId,
        address _depositSender,
        bytes calldata _data
    ) external payable;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {L2TransactionRequestTwoBridgesInner, IBridgehub} from "./IBridgehub.sol";
import {IAssetRouterBase} from "../bridge/asset-router/IAssetRouterBase.sol";
import {IL1AssetDeploymentTracker} from "../bridge/interfaces/IL1AssetDeploymentTracker.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
interface ICTMDeploymentTracker is IL1AssetDeploymentTracker {
    function bridgehubDeposit(
        uint256 _chainId,
        address _originalCaller,
        uint256 _l2Value,
        bytes calldata _data
    ) external payable returns (L2TransactionRequestTwoBridgesInner memory request);

    function BRIDGE_HUB() external view returns (IBridgehub);

    function L1_ASSET_ROUTER() external view returns (IAssetRouterBase);

    function registerCTMAssetOnL1(address _ctmAddress) external;

    function calculateAssetId(address _l1CTM) external view returns (bytes32);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IBridgehub} from "./IBridgehub.sol";

/**
 * @author Matter Labs
 * @notice MessageRoot contract is responsible for storing and aggregating the roots of the batches from different chains into the MessageRoot.
 * @custom:security-contact [email protected]
 */
interface IMessageRoot {
    function BRIDGE_HUB() external view returns (IBridgehub);

    function addNewChain(uint256 _chainId) external;

    function addChainBatchRoot(uint256 _chainId, uint256 _batchNumber, bytes32 _chainBatchRoot) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

/// @title Asset Handler contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice Used for any asset handler and called by the AssetRouter
interface IAssetHandler {
    /// @dev Emitted when a token is minted
    event BridgeMint(uint256 indexed chainId, bytes32 indexed assetId, address receiver, uint256 amount);

    /// @dev Emitted when a token is burned
    event BridgeBurn(
        uint256 indexed chainId,
        bytes32 indexed assetId,
        address indexed sender,
        address receiver,
        uint256 amount
    );

    /// @param _chainId the chainId that the message is from
    /// @param _assetId the assetId of the asset being bridged
    /// @param _data the actual data specified for the function
    /// @dev Note, that while payable, this function will only receive base token on L2 chains,
    /// while L1 the provided msg.value is always 0. However, this may change in the future,
    /// so if your AssetHandler implementation relies on it, it is better to explicitly check it.
    function bridgeMint(uint256 _chainId, bytes32 _assetId, bytes calldata _data) external payable;

    /// @notice Burns bridged tokens and returns the calldata for L2 <-> L1 message.
    /// @dev In case of native token vault _data is the tuple of _depositAmount and _l2Receiver.
    /// @param _chainId the chainId that the message will be sent to
    /// @param _msgValue the msg.value of the L2 transaction. For now it is always 0.
    /// @param _assetId the assetId of the asset being bridged
    /// @param _originalCaller the original caller of the
    /// @param _data the actual data specified for the function
    /// @return _bridgeMintData The calldata used by counterpart asset handler to unlock tokens for recipient.
    function bridgeBurn(
        uint256 _chainId,
        uint256 _msgValue,
        bytes32 _assetId,
        address _originalCaller,
        bytes calldata _data
    ) external payable returns (bytes memory _bridgeMintData);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {Merkle} from "./Merkle.sol";
import {Arrays} from "@openzeppelin/contracts-v4/utils/Arrays.sol";

/**
 * @dev Library for managing https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] data structures.
 *
 * Each tree is a complete binary tree with the ability to sequentially insert leaves, changing them from a zero to a
 * non-zero value and updating its root. This structure allows inserting commitments (or other entries) that are not
 * stored, but can be proven to be part of the tree at a later time if the root is kept. See {MerkleProof}.
 *
 * A tree is defined by the following parameters:
 *
 * * Depth: The number of levels in the tree, it also defines the maximum number of leaves as 2**depth.
 * * Zero value: The value that represents an empty leaf. Used to avoid regular zero values to be part of the tree.
 * * Hashing function: A cryptographic hash function used to produce internal nodes.
 *
 * This is a fork of OpenZeppelin's [`MerkleTree`](https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9af280dc4b45ee5bda96ba47ff829b407eaab67e/contracts/utils/structs/MerkleTree.sol)
 * library, with the changes to support dynamic tree growth (doubling the size when full).
 */
library DynamicIncrementalMerkle {
    /**
     * @dev A complete `bytes32` Merkle tree.
     *
     * The `sides` and `zero` arrays are set to have a length equal to the depth of the tree during setup.
     *
     * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
     * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
     * lead to unexpected behavior.
     *
     * NOTE: The `root` and the updates history is not stored within the tree. Consider using a secondary structure to
     * store a list of historical roots from the values returned from {setup} and {push} (e.g. a mapping, {BitMaps} or
     * {Checkpoints}).
     *
     * WARNING: Updating any of the tree's parameters after the first insertion will result in a corrupted tree.
     */
    struct Bytes32PushTree {
        uint256 _nextLeafIndex;
        bytes32[] _sides;
        bytes32[] _zeros;
    }

    /**
     * @dev Initialize a {Bytes32PushTree} using {Hashes-Keccak256} to hash internal nodes.
     * The capacity of the tree (i.e. number of leaves) is set to `2**levels`.
     *
     * IMPORTANT: The zero value should be carefully chosen since it will be stored in the tree representing
     * empty leaves. It should be a value that is not expected to be part of the tree.
     */
    function setup(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) {
        self._nextLeafIndex = 0;
        self._zeros.push(zero);
        self._sides.push(bytes32(0));
        return bytes32(0);
    }

    /**
     * @dev Resets the tree to a blank state.
     * Calling this function on MerkleTree that was already setup and used will reset it to a blank state.
     * @param zero The value that represents an empty leaf.
     * @return initialRoot The initial root of the tree.
     */
    function reset(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) {
        self._nextLeafIndex = 0;
        uint256 length = self._zeros.length;
        for (uint256 i = length; 0 < i; --i) {
            self._zeros.pop();
        }
        length = self._sides.length;
        for (uint256 i = length; 0 < i; --i) {
            self._sides.pop();
        }
        self._zeros.push(zero);
        self._sides.push(bytes32(0));
        return bytes32(0);
    }

    /**
     * @dev Insert a new leaf in the tree, and compute the new root. Returns the position of the inserted leaf in the
     * tree, and the resulting root.
     *
     * Hashing the leaf before calling this function is recommended as a protection against
     * second pre-image attacks.
     */
    function push(Bytes32PushTree storage self, bytes32 leaf) internal returns (uint256 index, bytes32 newRoot) {
        // Cache read
        uint256 levels = self._zeros.length - 1;

        // Get leaf index
        // solhint-disable-next-line gas-increment-by-one
        index = self._nextLeafIndex++;

        // Check if tree is full.
        if (index == 1 << levels) {
            bytes32 zero = self._zeros[levels];
            bytes32 newZero = Merkle.efficientHash(zero, zero);
            self._zeros.push(newZero);
            self._sides.push(bytes32(0));
            ++levels;
        }

        // Rebuild branch from leaf to root
        uint256 currentIndex = index;
        bytes32 currentLevelHash = leaf;
        bool updatedSides = false;
        for (uint32 i = 0; i < levels; ++i) {
            // Reaching the parent node, is currentLevelHash the left child?
            bool isLeft = currentIndex % 2 == 0;

            // If so, next time we will come from the right, so we need to save it
            if (isLeft && !updatedSides) {
                Arrays.unsafeAccess(self._sides, i).value = currentLevelHash;
                updatedSides = true;
            }

            // Compute the current node hash by using the hash function
            // with either its sibling (side) or the zero value for that level.
            currentLevelHash = Merkle.efficientHash(
                isLeft ? currentLevelHash : Arrays.unsafeAccess(self._sides, i).value,
                isLeft ? Arrays.unsafeAccess(self._zeros, i).value : currentLevelHash
            );

            // Update node index
            currentIndex >>= 1;
        }

        Arrays.unsafeAccess(self._sides, levels).value = currentLevelHash;
        return (index, currentLevelHash);
    }

    /**
     * @dev Tree's root.
     */
    function root(Bytes32PushTree storage self) internal view returns (bytes32) {
        return Arrays.unsafeAccess(self._sides, self._sides.length - 1).value;
    }

    /**
     * @dev Tree's height (does not include the root node).
     */
    function height(Bytes32PushTree storage self) internal view returns (uint256) {
        return self._sides.length - 1;
    }
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @notice Part of the configuration parameters of ZKP circuits
struct VerifierParams {
    bytes32 recursionNodeLevelVkHash;
    bytes32 recursionLeafLevelVkHash;
    bytes32 recursionCircuitsSetVksHash;
}

/// @title The interface of the Verifier contract, responsible for the zero knowledge proof verification.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IVerifier {
    /// @dev Verifies a zk-SNARK proof.
    /// @return A boolean value indicating whether the zk-SNARK proof is valid.
    /// Note: The function may revert execution instead of returning false in some cases.
    function verify(uint256[] calldata _publicInputs, uint256[] calldata _proof) external view returns (bool);

    /// @notice Calculates a keccak256 hash of the runtime loaded verification keys.
    /// @return vkHash The keccak256 hash of the loaded verification keys.
    function verificationKeyHash() external view returns (bytes32);
}

File 31 of 41 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {SlotOccupied, NotInitializedReentrancyGuard, Reentrancy} from "./L1ContractErrors.sol";

/**
 * @custom:security-contact [email protected]
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 *
 * _Since v2.5.0:_ this module is now much more gas efficient, given net gas
 * metering changes introduced in the Istanbul hardfork.
 */
abstract contract ReentrancyGuard {
    /// @dev Address of lock flag variable.
    /// @dev Flag is placed at random memory location to not interfere with Storage contract.
    // keccak256("ReentrancyGuard") - 1;
    uint256 private constant LOCK_FLAG_ADDRESS = 0x8e94fed44239eb2314ab7a406345e6c5a8f0ccedf3b600de3d004e672c33abf4;

    // solhint-disable-next-line max-line-length
    // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/566a774222707e424896c0c390a84dc3c13bdcb2/contracts/security/ReentrancyGuard.sol
    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    modifier reentrancyGuardInitializer() {
        _initializeReentrancyGuard();
        _;
    }

    function _initializeReentrancyGuard() private {
        uint256 lockSlotOldValue;

        // Storing an initial non-zero value makes deployment a bit more
        // expensive but in exchange every call to nonReentrant
        // will be cheaper.
        assembly {
            lockSlotOldValue := sload(LOCK_FLAG_ADDRESS)
            sstore(LOCK_FLAG_ADDRESS, _NOT_ENTERED)
        }

        // Check that storage slot for reentrancy guard is empty to rule out possibility of slot conflict
        if (lockSlotOldValue != 0) {
            revert SlotOccupied();
        }
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        uint256 _status;
        assembly {
            _status := sload(LOCK_FLAG_ADDRESS)
        }

        if (_status == 0) {
            revert NotInitializedReentrancyGuard();
        }
        // On the first call to nonReentrant, _NOT_ENTERED will be true
        if (_status != _NOT_ENTERED) {
            revert Reentrancy();
        }

        // Any calls to nonReentrant after this point will fail
        assembly {
            sstore(LOCK_FLAG_ADDRESS, _ENTERED)
        }

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        assembly {
            sstore(LOCK_FLAG_ADDRESS, _NOT_ENTERED)
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IBridgehub} from "../../bridgehub/IBridgehub.sol";
import {IL1NativeTokenVault} from "../ntv/IL1NativeTokenVault.sol";
import {IL1ERC20Bridge} from "./IL1ERC20Bridge.sol";

/// @param chainId The chain ID of the transaction to check.
/// @param l2BatchNumber The L2 batch number where the withdrawal was processed.
/// @param l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message.
/// @param l2sender The address of the message sender on L2 (base token system contract address or asset handler)
/// @param l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent.
/// @param message The L2 withdraw data, stored in an L2 -> L1 message.
/// @param merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization.
struct FinalizeL1DepositParams {
    uint256 chainId;
    uint256 l2BatchNumber;
    uint256 l2MessageIndex;
    address l2Sender;
    uint16 l2TxNumberInBatch;
    bytes message;
    bytes32[] merkleProof;
}

/// @title L1 Bridge contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IL1Nullifier {
    event BridgehubDepositFinalized(
        uint256 indexed chainId,
        bytes32 indexed txDataHash,
        bytes32 indexed l2DepositTxHash
    );

    function isWithdrawalFinalized(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex
    ) external view returns (bool);

    function claimFailedDepositLegacyErc20Bridge(
        address _depositSender,
        address _l1Token,
        uint256 _amount,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    function claimFailedDeposit(
        uint256 _chainId,
        address _depositSender,
        address _l1Token,
        uint256 _amount,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    function finalizeDeposit(FinalizeL1DepositParams calldata _finalizeWithdrawalParams) external;

    function BRIDGE_HUB() external view returns (IBridgehub);

    function legacyBridge() external view returns (IL1ERC20Bridge);

    function depositHappened(uint256 _chainId, bytes32 _l2TxHash) external view returns (bytes32);

    function bridgehubConfirmL2TransactionForwarded(uint256 _chainId, bytes32 _txDataHash, bytes32 _txHash) external;

    function l1NativeTokenVault() external view returns (IL1NativeTokenVault);

    function setL1NativeTokenVault(IL1NativeTokenVault _nativeTokenVault) external;

    function setL1AssetRouter(address _l1AssetRouter) external;

    function chainBalance(uint256 _chainId, address _token) external view returns (uint256);

    function l2BridgeAddress(uint256 _chainId) external view returns (address);

    function transferTokenToNTV(address _token) external;

    function nullifyChainBalanceByNTV(uint256 _chainId, address _token) external;

    /// @dev Withdraw funds from the initiated deposit, that failed when finalizing on L2.
    /// @param _chainId The ZK chain id to which deposit was initiated.
    /// @param _depositSender The address of the entity that initiated the deposit.
    /// @param _assetId The unique identifier of the deposited L1 token.
    /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information.
    /// @param _l2TxHash The L2 transaction hash of the failed deposit finalization.
    /// @param _l2BatchNumber The L2 batch number where the deposit finalization was processed.
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message.
    /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent.
    /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction with deposit finalization.
    /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system.
    function bridgeRecoverFailedTransfer(
        uint256 _chainId,
        address _depositSender,
        bytes32 _assetId,
        bytes memory _assetData,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    /// @notice Legacy function to finalize withdrawal via the same
    /// interface as the old L1SharedBridge.
    /// @dev Note, that we need to keep this interface, since the `L2AssetRouter`
    /// will continue returning the previous address as the `l1SharedBridge`. The value
    /// returned by it is used in the SDK for finalizing withdrawals.
    /// @param _chainId The chain ID of the transaction to check
    /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed
    /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message
    /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent
    /// @param _message The L2 withdraw data, stored in an L2 -> L1 message
    /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization
    function finalizeWithdrawal(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IAssetRouterBase} from "../asset-router/IAssetRouterBase.sol";

/// @title Base Native token vault contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice The NTV is an Asset Handler for the L1AssetRouter to handle native tokens
interface INativeTokenVault {
    event BridgedTokenBeaconUpdated(address bridgedTokenBeacon, bytes32 bridgedTokenProxyBytecodeHash);

    /// @notice The Weth token address
    function WETH_TOKEN() external view returns (address);

    /// @notice The AssetRouter contract
    function ASSET_ROUTER() external view returns (IAssetRouterBase);

    /// @notice The chain ID of the L1 chain
    function L1_CHAIN_ID() external view returns (uint256);

    /// @notice Returns the chain ID of the origin chain for a given asset ID
    function originChainId(bytes32 assetId) external view returns (uint256);

    /// @notice Registers tokens within the NTV.
    /// @dev The goal is to allow bridging native tokens automatically, by registering them on the fly.
    /// @notice Allows the bridge to register a token address for the vault.
    /// @notice No access control is ok, since the bridging of tokens should be permissionless. This requires permissionless registration.
    function registerToken(address _l1Token) external;

    /// @notice Ensures that the native token is registered with the NTV.
    /// @dev This function is used to ensure that the token is registered with the NTV.
    function ensureTokenIsRegistered(address _nativeToken) external returns (bytes32);

    /// @notice Used to get the the ERC20 data for a token
    function getERC20Getters(address _token, uint256 _originChainId) external view returns (bytes memory);

    /// @notice Used to get the token address of an assetId
    function tokenAddress(bytes32 assetId) external view returns (address);

    /// @notice Used to get the assetId of a token
    function assetId(address token) external view returns (bytes32);

    /// @notice Used to get the expected bridged token address corresponding to its native counterpart
    function calculateCreate2TokenAddress(uint256 _originChainId, address _originToken) external view returns (address);

    /// @notice Tries to register a token from the provided `_burnData` and reverts if it is not possible.
    function tryRegisterTokenFromBurnData(bytes calldata _burnData, bytes32 _expectedAssetId) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IBridgehub} from "../../bridgehub/IBridgehub.sol";

/// @dev The encoding version used for legacy txs.
bytes1 constant LEGACY_ENCODING_VERSION = 0x00;

/// @dev The encoding version used for new txs.
bytes1 constant NEW_ENCODING_VERSION = 0x01;

/// @dev The encoding version used for txs that set the asset handler on the counterpart contract.
bytes1 constant SET_ASSET_HANDLER_COUNTERPART_ENCODING_VERSION = 0x02;

/// @title L1 Bridge contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IAssetRouterBase {
    event BridgehubDepositBaseTokenInitiated(
        uint256 indexed chainId,
        address indexed from,
        bytes32 assetId,
        uint256 amount
    );

    event BridgehubDepositInitiated(
        uint256 indexed chainId,
        bytes32 indexed txDataHash,
        address indexed from,
        bytes32 assetId,
        bytes bridgeMintCalldata
    );

    event BridgehubWithdrawalInitiated(
        uint256 chainId,
        address indexed sender,
        bytes32 indexed assetId,
        bytes32 assetDataHash // Todo: What's the point of emitting hash?
    );

    event AssetDeploymentTrackerRegistered(
        bytes32 indexed assetId,
        bytes32 indexed additionalData,
        address assetDeploymentTracker
    );

    event AssetHandlerRegistered(bytes32 indexed assetId, address indexed _assetHandlerAddress);

    event DepositFinalizedAssetRouter(uint256 indexed chainId, bytes32 indexed assetId, bytes assetData);

    function BRIDGE_HUB() external view returns (IBridgehub);

    /// @notice Sets the asset handler address for a specified asset ID on the chain of the asset deployment tracker.
    /// @dev The caller of this function is encoded within the `assetId`, therefore, it should be invoked by the asset deployment tracker contract.
    /// @dev No access control on the caller, as msg.sender is encoded in the assetId.
    /// @dev Typically, for most tokens, ADT is the native token vault. However, custom tokens may have their own specific asset deployment trackers.
    /// @dev `setAssetHandlerAddressOnCounterpart` should be called on L1 to set asset handlers on L2 chains for a specific asset ID.
    /// @param _assetRegistrationData The asset data which may include the asset address and any additional required data or encodings.
    /// @param _assetHandlerAddress The address of the asset handler to be set for the provided asset.
    function setAssetHandlerAddressThisChain(bytes32 _assetRegistrationData, address _assetHandlerAddress) external;

    function assetHandlerAddress(bytes32 _assetId) external view returns (address);

    /// @notice Finalize the withdrawal and release funds.
    /// @param _chainId The chain ID of the transaction to check.
    /// @param _assetId The bridged asset ID.
    /// @param _transferData The position in the L2 logs Merkle tree of the l2Log that was sent with the message.
    /// @dev We have both the legacy finalizeWithdrawal and the new finalizeDeposit functions,
    /// finalizeDeposit uses the new format. On the L2 we have finalizeDeposit with new and old formats both.
    function finalizeDeposit(uint256 _chainId, bytes32 _assetId, bytes memory _transferData) external payable;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

/// @title L1 Bridge contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IL1SharedBridgeLegacy {
    function l2BridgeAddress(uint256 _chainId) external view returns (address);
}

// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {IL1Nullifier} from "./IL1Nullifier.sol";
import {IL1NativeTokenVault} from "../ntv/IL1NativeTokenVault.sol";
import {IL1AssetRouter} from "../asset-router/IL1AssetRouter.sol";

/// @title L1 Bridge contract legacy interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice Legacy Bridge interface before ZK chain migration, used for backward compatibility with ZKsync Era
interface IL1ERC20Bridge {
    event DepositInitiated(
        bytes32 indexed l2DepositTxHash,
        address indexed from,
        address indexed to,
        address l1Token,
        uint256 amount
    );

    event WithdrawalFinalized(address indexed to, address indexed l1Token, uint256 amount);

    event ClaimedFailedDeposit(address indexed to, address indexed l1Token, uint256 amount);

    function isWithdrawalFinalized(uint256 _l2BatchNumber, uint256 _l2MessageIndex) external view returns (bool);

    function deposit(
        address _l2Receiver,
        address _l1Token,
        uint256 _amount,
        uint256 _l2TxGasLimit,
        uint256 _l2TxGasPerPubdataByte,
        address _refundRecipient
    ) external payable returns (bytes32 txHash);

    function deposit(
        address _l2Receiver,
        address _l1Token,
        uint256 _amount,
        uint256 _l2TxGasLimit,
        uint256 _l2TxGasPerPubdataByte
    ) external payable returns (bytes32 txHash);

    function claimFailedDeposit(
        address _depositSender,
        address _l1Token,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    function finalizeWithdrawal(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;

    function l2TokenAddress(address _l1Token) external view returns (address);

    function L1_NULLIFIER() external view returns (IL1Nullifier);

    function L1_ASSET_ROUTER() external view returns (IL1AssetRouter);

    function L1_NATIVE_TOKEN_VAULT() external view returns (IL1NativeTokenVault);

    function l2TokenBeacon() external view returns (address);

    function l2Bridge() external view returns (address);

    function depositAmount(
        address _account,
        address _l1Token,
        bytes32 _depositL2TxHash
    ) external view returns (uint256 amount);
}

File 37 of 41 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.0;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.2._
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v2.5._
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.2._
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v2.5._
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v2.5._
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v2.5._
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v2.5._
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     *
     * _Available since v3.0._
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.7._
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.7._
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     *
     * _Available since v3.0._
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
        return int256(value);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IL1AssetDeploymentTracker {
    function bridgeCheckCounterpartAddress(
        uint256 _chainId,
        bytes32 _assetId,
        address _originalCaller,
        address _assetHandlerAddressOnCounterpart
    ) external view;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Arrays.sol)

pragma solidity ^0.8.0;

import "./StorageSlot.sol";
import "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using StorageSlot for bytes32;

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * `array` is expected to be sorted in ascending order, and to contain no
     * repeated elements.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        if (array.length == 0) {
            return 0;
        }

        uint256 low = 0;
        uint256 high = array.length;

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds down (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getUint256Slot();
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IL1Nullifier} from "../interfaces/IL1Nullifier.sol";
import {INativeTokenVault} from "./INativeTokenVault.sol";
import {IL1AssetDeploymentTracker} from "../interfaces/IL1AssetDeploymentTracker.sol";

/// @title L1 Native token vault contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice The NTV is an Asset Handler for the L1AssetRouter to handle native tokens
// is IL1AssetHandler, IL1BaseTokenAssetHandler {
interface IL1NativeTokenVault is INativeTokenVault, IL1AssetDeploymentTracker {
    /// @notice The L1Nullifier contract
    function L1_NULLIFIER() external view returns (IL1Nullifier);

    /// @notice Returns the total number of specific tokens locked for some chain
    function chainBalance(uint256 _chainId, bytes32 _assetId) external view returns (uint256);

    /// @notice Registers ETH token
    function registerEthToken() external;

    event TokenBeaconUpdated(address indexed l2TokenBeacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

Settings
{
  "remappings": [
    "@ensdomains/=node_modules/@ensdomains/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat/=node_modules/hardhat/",
    "murky/=lib/murky/src/",
    "foundry-test/=test/foundry/",
    "l2-contracts/=../l2-contracts/contracts/",
    "@openzeppelin/contracts-v4/=lib/openzeppelin-contracts-v4/contracts/",
    "@openzeppelin/contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable-v4/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/",
    "openzeppelin-contracts-v4/=lib/openzeppelin-contracts-v4/",
    "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"_eraChainId","type":"uint256"},{"internalType":"uint256","name":"_l1ChainId","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BaseTokenGasPriceDenominatorNotSet","type":"error"},{"inputs":[{"internalType":"uint256","name":"batchNumber","type":"uint256"}],"name":"BatchNotExecuted","type":"error"},{"inputs":[],"name":"GasPerPubdataMismatch","type":"error"},{"inputs":[],"name":"HashedLogIsDefault","type":"error"},{"inputs":[],"name":"InvalidProofLengthForFinalNode","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"LengthIsNotDivisibleBy32","type":"error"},{"inputs":[],"name":"LocalRootIsZero","type":"error"},{"inputs":[],"name":"LocalRootMustBeZero","type":"error"},{"inputs":[{"internalType":"enum BytecodeError","name":"","type":"uint8"}],"name":"MalformedBytecode","type":"error"},{"inputs":[],"name":"MerkleIndexOutOfBounds","type":"error"},{"inputs":[],"name":"MerklePathEmpty","type":"error"},{"inputs":[],"name":"MerklePathOutOfBounds","type":"error"},{"inputs":[{"internalType":"uint256","name":"required","type":"uint256"},{"internalType":"uint256","name":"provided","type":"uint256"}],"name":"MsgValueTooLow","type":"error"},{"inputs":[],"name":"NotHyperchain","type":"error"},{"inputs":[],"name":"NotInitializedReentrancyGuard","type":"error"},{"inputs":[{"internalType":"uint256","name":"blockChainId","type":"uint256"}],"name":"NotL1","type":"error"},{"inputs":[],"name":"NotSettlementLayer","type":"error"},{"inputs":[],"name":"OnlyEraSupported","type":"error"},{"inputs":[{"internalType":"uint256","name":"limit","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"PubdataGreaterThanLimit","type":"error"},{"inputs":[],"name":"Reentrancy","type":"error"},{"inputs":[],"name":"TooManyFactoryDeps","type":"error"},{"inputs":[],"name":"TooMuchGas","type":"error"},{"inputs":[],"name":"TransactionNotAllowed","type":"error"},{"inputs":[],"name":"TxnBodyGasLimitNotEnoughGas","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"Unauthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"metadataVersion","type":"uint256"}],"name":"UnsupportedProofMetadataVersion","type":"error"},{"inputs":[],"name":"ValidateTxnNotEnoughGas","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"txId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"txHash","type":"bytes32"},{"indexed":false,"internalType":"uint64","name":"expirationTimestamp","type":"uint64"},{"components":[{"internalType":"uint256","name":"txType","type":"uint256"},{"internalType":"uint256","name":"from","type":"uint256"},{"internalType":"uint256","name":"to","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"gasPerPubdataByteLimit","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"uint256","name":"paymaster","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256[4]","name":"reserved","type":"uint256[4]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256[]","name":"factoryDeps","type":"uint256[]"},{"internalType":"bytes","name":"paymasterInput","type":"bytes"},{"internalType":"bytes","name":"reservedDynamic","type":"bytes"}],"indexed":false,"internalType":"struct L2CanonicalTransaction","name":"transaction","type":"tuple"},{"indexed":false,"internalType":"bytes[]","name":"factoryDeps","type":"bytes[]"}],"name":"NewPriorityRequest","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"txId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"txHash","type":"bytes32"},{"indexed":false,"internalType":"uint64","name":"expirationTimestamp","type":"uint64"}],"name":"NewRelayedPriorityTransaction","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"contractL2","type":"address"},{"internalType":"uint256","name":"mintValue","type":"uint256"},{"internalType":"uint256","name":"l2Value","type":"uint256"},{"internalType":"bytes","name":"l2Calldata","type":"bytes"},{"internalType":"uint256","name":"l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"l2GasPerPubdataByteLimit","type":"uint256"},{"internalType":"bytes[]","name":"factoryDeps","type":"bytes[]"},{"internalType":"address","name":"refundRecipient","type":"address"}],"internalType":"struct BridgehubL2TransactionRequest","name":"_request","type":"tuple"}],"name":"bridgehubRequestL2Transaction","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_canonicalTxHash","type":"bytes32"},{"internalType":"uint64","name":"_expirationTimestamp","type":"uint64"}],"name":"bridgehubRequestL2TransactionOnGateway","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BatchNumber","type":"uint256"},{"internalType":"uint256","name":"_l2MessageIndex","type":"uint256"},{"internalType":"uint16","name":"_l2TxNumberInBatch","type":"uint16"},{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"finalizeEthWithdrawal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_gasPrice","type":"uint256"},{"internalType":"uint256","name":"_l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"_l2GasPerPubdataByteLimit","type":"uint256"}],"name":"l2TransactionBaseCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_l2TxHash","type":"bytes32"},{"internalType":"uint256","name":"_l2BatchNumber","type":"uint256"},{"internalType":"uint256","name":"_l2MessageIndex","type":"uint256"},{"internalType":"uint16","name":"_l2TxNumberInBatch","type":"uint16"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"enum TxStatus","name":"_status","type":"uint8"}],"name":"proveL1ToL2TransactionStatus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_batchNumber","type":"uint256"},{"internalType":"uint256","name":"_leafProofMask","type":"uint256"},{"internalType":"bytes32","name":"_leaf","type":"bytes32"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"proveL2LeafInclusion","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_batchNumber","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"components":[{"internalType":"uint8","name":"l2ShardId","type":"uint8"},{"internalType":"bool","name":"isService","type":"bool"},{"internalType":"uint16","name":"txNumberInBatch","type":"uint16"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"bytes32","name":"key","type":"bytes32"},{"internalType":"bytes32","name":"value","type":"bytes32"}],"internalType":"struct L2Log","name":"_log","type":"tuple"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"proveL2LogInclusion","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_batchNumber","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"components":[{"internalType":"uint16","name":"txNumberInBatch","type":"uint16"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct L2Message","name":"_message","type":"tuple"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"proveL2MessageInclusion","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_contractL2","type":"address"},{"internalType":"bytes","name":"_l2Calldata","type":"bytes"}],"name":"requestL2ServiceTransaction","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_contractL2","type":"address"},{"internalType":"uint256","name":"_l2Value","type":"uint256"},{"internalType":"bytes","name":"_calldata","type":"bytes"},{"internalType":"uint256","name":"_l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"_l2GasPerPubdataByteLimit","type":"uint256"},{"internalType":"bytes[]","name":"_factoryDeps","type":"bytes[]"},{"internalType":"address","name":"_refundRecipient","type":"address"}],"name":"requestL2Transaction","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"bytes32","name":"_canonicalTxHash","type":"bytes32"},{"internalType":"uint64","name":"_expirationTimestamp","type":"uint64"}],"name":"requestL2TransactionToGatewayMailbox","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"}]

0x60c060405234801562000010575f80fd5b50604051620032a5380380620032a5833981016040819052620000339162000042565b60809190915260a05262000065565b5f806040838503121562000054575f80fd5b505080516020909101519092909150565b60805160a051613202620000a35f395f81816103ae01528181610575015261092d01525f81816103f3015281816104c2015261097201526132025ff3fe6080604052600436106100a5575f3560e01c8063b473318e11610062578063b473318e146101ad578063d0772551146101cc578063d07b90d1146101eb578063ddcc9eec1461020a578063e4948f4314610229578063eb67241914610248575f80fd5b8063042901c7146100a957806312f43dab146100dd57806317d7de7c1461010a578063263b7f8e1461014e5780636c0960f91461016d5780637efda2ae1461018e575b5f80fd5b3480156100b4575f80fd5b506100c86100c33660046124af565b61025b565b60405190151581526020015b60405180910390f35b3480156100e8575f80fd5b506100fc6100f7366004612530565b6102d7565b6040519081526020016100d4565b348015610115575f80fd5b506101416040518060400160405280600c81526020016b13585a5b189bde119858d95d60a21b81525081565b6040516100d491906125b4565b348015610159575f80fd5b506100c86101683660046125c6565b610322565b348015610178575f80fd5b5061018c610187366004612672565b61034a565b005b348015610199575f80fd5b506100c86101a83660046126fe565b610541565b3480156101b8575f80fd5b506100fc6101c736600461273c565b61054f565b3480156101d7575f80fd5b506100fc6101e636600461277b565b610572565b3480156101f6575f80fd5b506100fc6102053660046127cf565b6106ef565b348015610215575f80fd5b5061018c61022436600461281f565b610890565b348015610234575f80fd5b506100c8610243366004612849565b61091b565b6100fc6102563660046128b6565b61092a565b5f806040518060c001604052805f60ff1681526020016001151581526020018761ffff16815260200161800060016102939190612973565b6001600160a01b031681526020018a81526020018460018111156102b9576102b961299a565b905290506102ca8888838888610b4c565b9998505050505050505050565b6029545f906001600160a01b0316331461030b5760405163472511eb60e11b81523360048201526024015b60405180910390fd5b61031c61031783612b26565b610c48565b92915050565b5f61033e868661033736889003880188612bf8565b8686610b4c565b90505b95945050505050565b5f805160206131ad833981519152545f81900361037a5760405163dd7e362160e01b815260040160405180910390fd5b6001811461039b5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad833981519152557f000000000000000000000000000000000000000000000000000000000000000046146103ee576040516343a3871b60e11b8152466004820152602401610302565b6028547f000000000000000000000000000000000000000000000000000000000000000014610430576040516379f6cefd60e11b815260040160405180910390fd5b6029546040805163070e40ef60e31b815290515f926001600160a01b03169163387207789160048083019260209291908290030181865afa158015610477573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061049b9190612c93565b60405163c87325f160e01b81529091506001600160a01b0382169063c87325f1906104f8907f0000000000000000000000000000000000000000000000000000000000000000908d908d908d908d908d908d908d90600401612cae565b5f604051808303815f87803b15801561050f575f80fd5b505af1158015610521573d5f803e3d5ffd5b505050505060015f805160206131ad833981519152555050505050505050565b5f61033e8686868686610dbf565b5f8061055b8584611120565b90506105678482612d33565b9150505b9392505050565b5f7f000000000000000000000000000000000000000000000000000000000000000046146105b5576040516343a3871b60e11b8152466004820152602401610302565b602954602854604051633a5083e360e21b81526001600160a01b039092169163e9420f8c916105ea9160040190815260200190565b602060405180830381865afa158015610605573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106299190612d4a565b61064657604051636813371360e11b815260040160405180910390fd5b602a5460405163e680c4c160e01b81526004810186905233916001600160a01b03169063e680c4c190602401602060405180830381865afa15801561068d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106b19190612c93565b6001600160a01b0316146106d85760405163196efcd160e11b815260040160405180910390fd5b5f6106e48585856112ed565b90506105678161140a565b5f3330146107125760405163472511eb60e11b8152336004820152602401610302565b6107dc6040518061012001604052806001600160a01b0380168152602001866001600160a01b031681526020015f81526020015f815260200185858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920182905250938552505063044aa20060208401525061032060408301526060909101906040519080825280602002602001820160405280156107cd57816020015b60608152602001906001900390816107b85790505b5081525f60209091015261140a565b6032549091506001600160a01b03161561056b576032546028546001600160a01b039091169063d077255190836108135f42612d65565b6040516001600160e01b031960e086901b168152600481019390935260248301919091526001600160401b031660448201526064016020604051808303815f875af1158015610864573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108889190612d78565b509392505050565b6029546001600160a01b031633146108bd5760405163472511eb60e11b8152336004820152602401610302565b6108c782826114f5565b7f0137d2eaa6ec5b7e4f233f6d6f441410014535d0f3985367994c94bf15a2a5646108f0611540565b60408051918252602082018590526001600160401b0384169082015260600160405180910390a15050565b5f61033e868661033787611569565b5f7f0000000000000000000000000000000000000000000000000000000000000000461461096d576040516343a3871b60e11b8152466004820152602401610302565b6028547f0000000000000000000000000000000000000000000000000000000000000000146109af576040516379f6cefd60e11b815260040160405180910390fd5b610a52604051806101200160405280336001600160a01b031681526020018c6001600160a01b031681526020013481526020018b81526020018a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152505050908252506020810189905260408101889052606001610a3b8688612d8f565b8152602001846001600160a01b0316815250610c48565b90505f806029015f9054906101000a90046001600160a01b03166001600160a01b031663387207786040518163ffffffff1660e01b8152600401602060405180830381865afa158015610aa7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610acb9190612c93565b6028546031546040516303121e5160e61b81526004810192909252602482015233604482015234606482018190529192506001600160a01b0383169163c4879440916084015f604051808303818588803b158015610b27575f80fd5b505af1158015610b39573d5f803e3d5ffd5b5050505050509998505050505050505050565b5f80845f015185602001518660400151876060015188608001518960a00151604051602001610bd69695949392919060f896871b6001600160f81b031916815294151590951b600185015260f09290921b6001600160f01b031916600284015260601b6bffffffffffffffffffffffff191660048301526018820152603881019190915260580190565b6040516020818303038152906040528051906020012090507f72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba5f1b8103610c30576040516369ab735d60e11b815260040160405180910390fd5b610c3d8787838787610dbf565b979650505050505050565b5f805160206131ad833981519152545f90808203610c795760405163dd7e362160e01b815260040160405180910390fd5b60018114610c9a5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad83398151915255602e546001600160a01b031615610d6857602e5483516020850151604080870151606088015160808901516101008a015193516332f3cb8f60e21b81526001600160a01b039097169663cbcf2e3c96610d0d9690959094939291600401612d9b565b602060405180830381865afa158015610d28573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d4c9190612d4a565b610d685760405162c5a6a960e01b815260040160405180910390fd5b6103208360c0015114610d8e5760405163c91cf3b160e01b815260040160405180910390fd5b610d9661232f565b60608101849052610da681611630565b60015f805160206131ad83398151915255949350505050565b5f818103610de057604051634711d60d60e11b815260040160405180910390fd5b5f80805f805f610df08989611818565b93509350935093508395505f610e1d610e168b8b8a888c610e119190612d65565b6118d4565b8d8d61197f565b9050610e298488612d65565b96508115610e9257600b548d1115610e5757604051630103c53560e51b8152600481018e9052602401610302565b5f8d8152600f602052604090205480610e83576040516354b4f24360e11b815260040160405180910390fd5b14965061034195505050505050565b5f8d8152600f602052604090205415610ebe57604051635ed7bea160e11b815260040160405180910390fd5b5f610ec9828f611a26565b90505f8b8b8a818110610ede57610ede612de6565b905060200201355f1c905088610ef390612dfa565b98505f610f10610f098e8e8d610e118b82612d65565b838561197f565b9050610f1c868b612d65565b9950610f2c815f60280154611a81565b985050505050505050505f805f80888887818110610f4c57610f4c612de6565b905060200201355f1c905085610f6190612dfa565b9550608081901c9350806001600160801b031692505f898988818110610f8957610f89612de6565b905060200201355f1c905086610f9e90612dfa565b602954604051633a5083e360e21b8152600481018490529198506001600160a01b03169063e9420f8c90602401602060405180830381865afa158015610fe6573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061100a9190612d4a565b61102757604051636813371360e11b815260040160405180910390fd5b60295460405163e680c4c160e01b8152600481018390526001600160a01b039091169063e680c4c190602401602060405180830381865afa15801561106e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110929190612c93565b92505050806001600160a01b0316637efda2ae8484876110b38d8d8c611ac2565b6040518563ffffffff1660e01b81526004016110d29493929190612e12565b602060405180830381865afa1580156110ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111119190612d4a565b9b9a5050505050505050505050565b6040805160c08101909152602680545f9283929091829060ff16600181111561114b5761114b61299a565b600181111561115c5761115c61299a565b81529054610100810463ffffffff9081166020840152650100000000008204811660408401526901000000000000000000820481166060840152600160681b8204166080830152600160881b90046001600160401b031660a090910152602d54909150600160801b90046001600160801b03165f036111ee5760405163377cd4b960e11b815260040160405180910390fd5b602d545f906001600160801b03600160801b8204811691611210911687612d33565b61121a9190612e82565b90505f80835160018111156112315761123161299a565b0361124457611241826011612d33565b90505b5f82846020015163ffffffff1661125b9190612d33565b90505f846040015163ffffffff16826112749190612e82565b61127e9084612d65565b90505f856060015163ffffffff16836112979190612e82565b8660a001516001600160401b03166112af9190612d65565b90505f8860016112bf8286612d65565b6112c99190612e95565b6112d39190612e82565b90506112df8282611ad8565b9a9950505050505050505050565b6112f5612362565b60405160248101859052604481018490526001600160401b03831660648201525f9060840160408051601f19818403018152918152602080830180516001600160e01b0316632926067d60e11b17905281516101208101909252731111111111111111111111111111111111111111825291925090810161137a620100006002612973565b6001600160a01b031681526020015f81526020015f815260200182815260200163044aa200815260200161032081526020015f6001600160401b038111156113c4576113c46129ae565b6040519080825280602002602001820160405280156113f757816020015b60608152602001906001900390816113e25790505b5081525f60209091015295945050505050565b5f805160206131ad833981519152545f9080820361143b5760405163dd7e362160e01b815260040160405180910390fd5b6001811461145c5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad833981519152555f6040518060800160405280611481611540565b81526020015f81526020015f426114989190612d65565b6001600160401b0316815260200185905290506114b36123c2565b6114bc82611aed565b80955081925050506114dc81836060015160e00151868560400151611b56565b505060015f805160206131ad8339815191525550919050565b603354601254101561153157604080516060810182528381526001600160401b03831660208201525f9181019190915261153190601090611baa565b61153c603383611c0b565b5050565b5f61154e6033546012541090565b1561155f575060115490565b905090565b61155a6033611c3a565b6040805160c080820183525f8083526020808401829052838501829052606084018290526080840182905260a084018290528451928301855290825260018282015291929091908201906115bf90850185612ea8565b61ffff1681526020016115d56180006008612973565b6001600160a01b031681526020018360200160208101906115f69190612ec1565b6001600160a01b031681526020016116116040850185612edc565b60405161161f929190612f1e565b604051908190039020905292915050565b5f808260600151905060408160e00151511115611660576040516376da24b960e01b815260040160405180910390fd5b611668611540565b835260c081015161167a903a90611120565b6020840181905260a08201515f916116929190612d33565b90508160600151816116a49190612d65565b826040015110156116e55760608201516116be9082612d65565b60408084015190516359c2d1ed60e11b815260048101929092526024820152604401610302565b6116f7826101000151835f0151611c4c565b6001600160a01b03908116610100840152825116321461172a57815161111161111160901b01016001600160a01b031682525b6117345f42612d65565b6001600160401b0316604085015261174a6123c2565b61175385611aed565b809550819250505061177381866060015160e00151868860400151611b56565b6032546001600160a01b03161561181057603254602854604087810151905163d077255160e01b81526004810192909252602482018790526001600160401b031660448201526001600160a01b039091169063d0772551906064016020604051808303815f875af11580156117ea573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061180e9190612d78565b505b505050919050565b5f805f805f86865f81811061182f5761182f612de6565b6020908102929092013592505081901b5f819003611891578160f881901c60011461187357604051631e49d3c160e21b815260f882901c6004820152602401610302565b6001965082871a95508260021a94508260031a1515935061189f9050565b5f9550869450859350600192505b8280156118ab57508315155b156118c957604051630918bf4560e31b815260040160405180910390fd5b505092959194509250565b60606118e08383612e95565b6001600160401b038111156118f7576118f76129ae565b604051908082528060200260200182016040528015611920578160200160208202803683370190505b509050825b828110156119765785858281811061193f5761193f612de6565b905060200201358285836119539190612e95565b8151811061196357611963612de6565b6020908102919091010152600101611925565b50949350505050565b82515f9061198d8482611ca6565b825f5b82811015611a1c576119a3600287612f2d565b156119d9576119d48782815181106119bd576119bd612de6565b6020026020010151835f9182526020526040902090565b611a05565b611a05828883815181106119ef576119ef612de6565b60200260200101515f9182526020526040902090565b9150611a12600287612e82565b9550600101611990565b5095945050505050565b604080517fd82fec4a37cbdc47f1e5cc4ad64deacf34a48e6f7c61fa5b68fd58e543259cf46020820152908101839052606081018290525f906080015b60405160208183030381529060405280519060200120905092915050565b604080517f39bc69363bb9e26cf14240de4e22569e95cf175cfbcf1ade1a47a253b4bf7f616020820152908101839052606081018290525f90608001611a63565b6060611ad0848484816118d4565b949350505050565b5f818311611ae6578161056b565b5090919050565b611af56123c2565b5f611aff83611ceb565b91505f82604051602001611b1391906130aa565b60408051808303601f19018152919052601a54602654919250611b469185918491600160681b900463ffffffff16611e33565b8080519060200120915050915091565b611b6082826114f5565b7f4531cd5795773d7101c17bdeb9f5ab7f47d7056017506f937083be5d6e77a38284610100015183838787604051611b9c9594939291906130bc565b60405180910390a150505050565b6001808301545f81815260208581526040918290208551815590850151918501516001600160c01b031668010000000000000000026001600160401b03909216919091179083015590611bfe908290612d65565b8360010181905550505050565b5f611c196003840183611eed565b5f908152600290940160205250506040909120805460ff1916600117905550565b600381015481545f9161031c91612d65565b5f6001600160a01b038316611c85576001600160a01b0382163214611c7c5761111161111160901b018201611c7e565b815b905061031c565b6001600160a01b0383163b15611ae65761111161111160901b018301611c7e565b6101008110611cc857604051631c50038560e01b815260040160405180910390fd5b6001811b821061153c57604051639bb54c3560e01b815260040160405180910390fd5b611cf36123c2565b5f8260600151905060405180610200016040528060ff8152602001825f01516001600160a01b0316815260200182602001516001600160a01b031681526020018260a0015181526020018260c001518152602001846020015181526020015f81526020015f8152602001845f01518152602001826060015181526020016040518060800160405280846040015181526020018461010001516001600160a01b031681526020015f81526020015f8152508152602001826080015181526020015f6001600160401b03811115611dca57611dca6129ae565b6040519080825280601f01601f191660200182016040528015611df4576020820181803683370190505b508152602001611e078360e00151612079565b8152604080515f8082526020808301845280850192909252825190815290810182529101529392505050565b5f611e4385606001518551612112565b905082811115611e665760405163f0b4e88f60e01b815260040160405180910390fd5b81856080015182611e779190612e82565b1115611eb05781856080015182611e8e9190612e82565b60405163959f26fb60e01b815260048101929092526024820152604401610302565b80611ec78551876101a00151518860800151612149565b1115611ee6576040516347b3b14560e01b815260040160405180910390fd5b5050505050565b5f805f60018560020180549050611f049190612e95565b8554909150855f611f1483612dfa565b9091555092506001811b8303611f96575f856002018281548110611f3a57611f3a612de6565b905f5260205f20015490505f611f5982835f9182526020526040902090565b600288018054600181810183555f9283526020808420909201849055808b0180549182018155835290822001559050611f9183612dfa565b925050505b82845f805b848163ffffffff16101561205a575f611fb5600286612f2d565b159050808015611fc3575082155b15611fe45760018a015f90815260209020849063ffffffff84160155600192505b61203f816120065760018b015f9081526020902063ffffffff84160154612008565b845b8261201c57855f9182526020526040902090565b60028c015f9081526020902063ffffffff851601545f9182526020526040902090565b9350600185901c9450508061205390613149565b9050611f9b565b50600188015f90815260209020829085015550925050505b9250929050565b8051606090806001600160401b03811115612096576120966129ae565b6040519080825280602002602001820160405280156120bf578160200160208202803683370190505b5091505f5b8181101561210b575f6120ef8583815181106120e2576120e2612de6565b60200260200101516121dc565b60018301602002850152506121048160010190565b90506120c4565b5050919050565b5f8061211d836122df565b905080841015612140576040516305c623bf60e31b815260040160405180910390fd5b90920392915050565b5f62028cf561216561215d61067887612d33565b6102206122fa565b61216f9082612d65565b905061217d6109a985612d33565b6121879082612d65565b9050612196816202a5ac611ad8565b90505f6121a4846058612d33565b9050836121b2604087612d33565b6121bc9190612d33565b6121c69082612d65565b90506121d28183612d65565b9695505050505050565b5f602082516121eb9190612f2d565b1561220e5781516040516371be960160e11b815260040161030291815260200190565b5f6020835161221d9190612e82565b905062010000811061224557600160405163043e266b60e41b8152600401610302919061316b565b612250600282612f2d565b5f0361227257600360405163043e266b60e41b8152600401610302919061316b565b6002836040516122829190613191565b602060405180830381855afa15801561229d573d5f803e3d5ffd5b5050506040513d601f19601f820116820180604052508101906122c09190612d78565b60e09190911b6001600160e01b039190911617600160f81b1792915050565b6127105f6122ee83600a612d33565b905061056b8282611ad8565b5f8215612327578161230d600185612e95565b6123179190612e82565b612322906001612d65565b61056b565b505f92915050565b60405180608001604052805f81526020015f81526020015f6001600160401b0316815260200161235d612362565b905290565b6040518061012001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f8152602001606081526020015f81526020015f8152602001606081526020015f6001600160a01b031681525090565b6040518061020001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f815260200161241261243b565b815260200160608152602001606081526020016060815260200160608152602001606081525090565b60405180608001604052806004906020820280368337509192915050565b803561ffff8116811461246a575f80fd5b919050565b5f8083601f84011261247f575f80fd5b5081356001600160401b03811115612495575f80fd5b6020830191508360208260051b8501011115612072575f80fd5b5f805f805f805f60c0888a0312156124c5575f80fd5b8735965060208801359550604088013594506124e360608901612459565b935060808801356001600160401b038111156124fd575f80fd5b6125098a828b0161246f565b90945092505060a088013560028110612520575f80fd5b8091505092959891949750929550565b5f60208284031215612540575f80fd5b81356001600160401b03811115612555575f80fd5b8201610120818503121561056b575f80fd5b5f5b83811015612581578181015183820152602001612569565b50505f910152565b5f81518084526125a0816020860160208601612567565b601f01601f19169290920160200192915050565b602081525f61056b6020830184612589565b5f805f805f8587036101208112156125dc575f80fd5b863595506020870135945060c0603f19820112156125f8575f80fd5b506040860192506101008601356001600160401b03811115612618575f80fd5b6126248882890161246f565b969995985093965092949392505050565b5f8083601f840112612645575f80fd5b5081356001600160401b0381111561265b575f80fd5b602083019150836020828501011115612072575f80fd5b5f805f805f805f60a0888a031215612688575f80fd5b873596506020880135955061269f60408901612459565b945060608801356001600160401b03808211156126ba575f80fd5b6126c68b838c01612635565b909650945060808a01359150808211156126de575f80fd5b506126eb8a828b0161246f565b989b979a50959850939692959293505050565b5f805f805f60808688031215612712575f80fd5b85359450602086013593506040860135925060608601356001600160401b03811115612618575f80fd5b5f805f6060848603121561274e575f80fd5b505081359360208301359350604090920135919050565b80356001600160401b038116811461246a575f80fd5b5f805f6060848603121561278d575f80fd5b83359250602084013591506127a460408501612765565b90509250925092565b6001600160a01b03811681146127c1575f80fd5b50565b803561246a816127ad565b5f805f604084860312156127e1575f80fd5b83356127ec816127ad565b925060208401356001600160401b03811115612806575f80fd5b61281286828701612635565b9497909650939450505050565b5f8060408385031215612830575f80fd5b8235915061284060208401612765565b90509250929050565b5f805f805f6080868803121561285d575f80fd5b853594506020860135935060408601356001600160401b0380821115612881575f80fd5b908701906060828a031215612894575f80fd5b909350606087013590808211156128a9575f80fd5b506126248882890161246f565b5f805f805f805f805f60e08a8c0312156128ce575f80fd5b89356128d9816127ad565b985060208a0135975060408a01356001600160401b03808211156128fb575f80fd5b6129078d838e01612635565b909950975060608c0135965060808c0135955060a08c013591508082111561292d575f80fd5b5061293a8c828d0161246f565b90945092505060c08a013561294e816127ad565b809150509295985092959850929598565b634e487b7160e01b5f52601160045260245ffd5b6001600160a01b038181168382160190808211156129935761299361295f565b5092915050565b634e487b7160e01b5f52602160045260245ffd5b634e487b7160e01b5f52604160045260245ffd5b60405161012081016001600160401b03811182821017156129e5576129e56129ae565b60405290565b604051601f8201601f191681016001600160401b0381118282101715612a1357612a136129ae565b604052919050565b5f82601f830112612a2a575f80fd5b81356001600160401b03811115612a4357612a436129ae565b612a56601f8201601f19166020016129eb565b818152846020838601011115612a6a575f80fd5b816020850160208301375f918101602001919091529392505050565b5f6001600160401b0380841115612a9f57612a9f6129ae565b8360051b6020612ab1602083016129eb565b8681529350908401906020840187831115612aca575f80fd5b855b83811015612afc57803585811115612ae2575f80fd5b612aee8a828a01612a1b565b835250908201908201612acc565b50505050509392505050565b5f82601f830112612b17575f80fd5b61056b83833560208501612a86565b5f6101208236031215612b37575f80fd5b612b3f6129c2565b612b48836127c4565b8152612b56602084016127c4565b6020820152604083013560408201526060830135606082015260808301356001600160401b0380821115612b88575f80fd5b612b9436838701612a1b565b608084015260a085013560a084015260c085013560c084015260e0850135915080821115612bc0575f80fd5b50612bcd36828601612b08565b60e083015250610100612be18185016127c4565b9082015292915050565b80151581146127c1575f80fd5b5f60c08284031215612c08575f80fd5b60405160c081018181106001600160401b0382111715612c2a57612c2a6129ae565b604052823560ff81168114612c3d575f80fd5b81526020830135612c4d81612beb565b6020820152612c5e60408401612459565b60408201526060830135612c71816127ad565b60608201526080838101359082015260a0928301359281019290925250919050565b5f60208284031215612ca3575f80fd5b815161056b816127ad565b88815287602082015286604082015261ffff8616606082015260c060808201528360c0820152838560e08301375f60e08583018101829052601f19601f8701168301838103820160a08501529081018490526101006001600160fb1b03851115612d16575f80fd5b8460051b80878385013791909101019a9950505050505050505050565b808202811582820484141761031c5761031c61295f565b5f60208284031215612d5a575f80fd5b815161056b81612beb565b8082018082111561031c5761031c61295f565b5f60208284031215612d88575f80fd5b5051919050565b5f61056b368484612a86565b5f60018060a01b038089168352808816602084015286604084015285606084015260c06080840152612dd060c0840186612589565b915080841660a084015250979650505050505050565b634e487b7160e01b5f52603260045260245ffd5b5f60018201612e0b57612e0b61295f565b5060010190565b5f6080820186835260208660208501528560408501526080606085015281855180845260a0860191506020870193505f5b81811015612e5f57845183529383019391830191600101612e43565b50909998505050505050505050565b634e487b7160e01b5f52601260045260245ffd5b5f82612e9057612e90612e6e565b500490565b8181038181111561031c5761031c61295f565b5f60208284031215612eb8575f80fd5b61056b82612459565b5f60208284031215612ed1575f80fd5b813561056b816127ad565b5f808335601e19843603018112612ef1575f80fd5b8301803591506001600160401b03821115612f0a575f80fd5b602001915036819003821315612072575f80fd5b818382375f9101908152919050565b5f82612f3b57612f3b612e6e565b500690565b805f5b6004811015612f62578151845260209384019390910190600101612f43565b50505050565b5f815180845260208085019450602084015f5b83811015612f9757815187529582019590820190600101612f7b565b509495945050505050565b5f610260825184526020830151602085015260408301516040850152606083015160608501526080830151608085015260a083015160a085015260c083015160c085015260e083015160e08501526101008084015181860152506101208084015181860152506101408084015161301b82870182612f40565b50506101608301516101c0828187015261303783870183612589565b925061018085015191506101e0868403818801526130558484612589565b93506101a086015192508684036102008801526130728484612f68565b935081860151925086840361022088015261308d8484612589565b935080860151925050508482036102408601526103418282612589565b602081525f61056b6020830184612fa2565b8581525f602086818401526001600160401b038616604084015260a060608401526130ea60a0840186612fa2565b8381036080850152845180825282820190600581901b830184018488015f5b8381101561313757601f19868403018552613125838351612589565b94870194925090860190600101613109565b50909c9b505050505050505050505050565b5f63ffffffff8083168181036131615761316161295f565b6001019392505050565b602081016004831061318b57634e487b7160e01b5f52602160045260245ffd5b91905290565b5f82516131a2818460208701612567565b919091019291505056fe8e94fed44239eb2314ab7a406345e6c5a8f0ccedf3b600de3d004e672c33abf4a2646970667358221220030464931900332d991c119f9018758bbe9edae5863b1f9265c67dafd32ab74c64736f6c63430008180033000000000000000000000000000000000000000000000000000000000000012c0000000000000000000000000000000000000000000000000000000000aa36a7

Deployed Bytecode

0x6080604052600436106100a5575f3560e01c8063b473318e11610062578063b473318e146101ad578063d0772551146101cc578063d07b90d1146101eb578063ddcc9eec1461020a578063e4948f4314610229578063eb67241914610248575f80fd5b8063042901c7146100a957806312f43dab146100dd57806317d7de7c1461010a578063263b7f8e1461014e5780636c0960f91461016d5780637efda2ae1461018e575b5f80fd5b3480156100b4575f80fd5b506100c86100c33660046124af565b61025b565b60405190151581526020015b60405180910390f35b3480156100e8575f80fd5b506100fc6100f7366004612530565b6102d7565b6040519081526020016100d4565b348015610115575f80fd5b506101416040518060400160405280600c81526020016b13585a5b189bde119858d95d60a21b81525081565b6040516100d491906125b4565b348015610159575f80fd5b506100c86101683660046125c6565b610322565b348015610178575f80fd5b5061018c610187366004612672565b61034a565b005b348015610199575f80fd5b506100c86101a83660046126fe565b610541565b3480156101b8575f80fd5b506100fc6101c736600461273c565b61054f565b3480156101d7575f80fd5b506100fc6101e636600461277b565b610572565b3480156101f6575f80fd5b506100fc6102053660046127cf565b6106ef565b348015610215575f80fd5b5061018c61022436600461281f565b610890565b348015610234575f80fd5b506100c8610243366004612849565b61091b565b6100fc6102563660046128b6565b61092a565b5f806040518060c001604052805f60ff1681526020016001151581526020018761ffff16815260200161800060016102939190612973565b6001600160a01b031681526020018a81526020018460018111156102b9576102b961299a565b905290506102ca8888838888610b4c565b9998505050505050505050565b6029545f906001600160a01b0316331461030b5760405163472511eb60e11b81523360048201526024015b60405180910390fd5b61031c61031783612b26565b610c48565b92915050565b5f61033e868661033736889003880188612bf8565b8686610b4c565b90505b95945050505050565b5f805160206131ad833981519152545f81900361037a5760405163dd7e362160e01b815260040160405180910390fd5b6001811461039b5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad833981519152557f0000000000000000000000000000000000000000000000000000000000aa36a746146103ee576040516343a3871b60e11b8152466004820152602401610302565b6028547f000000000000000000000000000000000000000000000000000000000000012c14610430576040516379f6cefd60e11b815260040160405180910390fd5b6029546040805163070e40ef60e31b815290515f926001600160a01b03169163387207789160048083019260209291908290030181865afa158015610477573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061049b9190612c93565b60405163c87325f160e01b81529091506001600160a01b0382169063c87325f1906104f8907f000000000000000000000000000000000000000000000000000000000000012c908d908d908d908d908d908d908d90600401612cae565b5f604051808303815f87803b15801561050f575f80fd5b505af1158015610521573d5f803e3d5ffd5b505050505060015f805160206131ad833981519152555050505050505050565b5f61033e8686868686610dbf565b5f8061055b8584611120565b90506105678482612d33565b9150505b9392505050565b5f7f0000000000000000000000000000000000000000000000000000000000aa36a746146105b5576040516343a3871b60e11b8152466004820152602401610302565b602954602854604051633a5083e360e21b81526001600160a01b039092169163e9420f8c916105ea9160040190815260200190565b602060405180830381865afa158015610605573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106299190612d4a565b61064657604051636813371360e11b815260040160405180910390fd5b602a5460405163e680c4c160e01b81526004810186905233916001600160a01b03169063e680c4c190602401602060405180830381865afa15801561068d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106b19190612c93565b6001600160a01b0316146106d85760405163196efcd160e11b815260040160405180910390fd5b5f6106e48585856112ed565b90506105678161140a565b5f3330146107125760405163472511eb60e11b8152336004820152602401610302565b6107dc6040518061012001604052806001600160a01b0380168152602001866001600160a01b031681526020015f81526020015f815260200185858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920182905250938552505063044aa20060208401525061032060408301526060909101906040519080825280602002602001820160405280156107cd57816020015b60608152602001906001900390816107b85790505b5081525f60209091015261140a565b6032549091506001600160a01b03161561056b576032546028546001600160a01b039091169063d077255190836108135f42612d65565b6040516001600160e01b031960e086901b168152600481019390935260248301919091526001600160401b031660448201526064016020604051808303815f875af1158015610864573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108889190612d78565b509392505050565b6029546001600160a01b031633146108bd5760405163472511eb60e11b8152336004820152602401610302565b6108c782826114f5565b7f0137d2eaa6ec5b7e4f233f6d6f441410014535d0f3985367994c94bf15a2a5646108f0611540565b60408051918252602082018590526001600160401b0384169082015260600160405180910390a15050565b5f61033e868661033787611569565b5f7f0000000000000000000000000000000000000000000000000000000000aa36a7461461096d576040516343a3871b60e11b8152466004820152602401610302565b6028547f000000000000000000000000000000000000000000000000000000000000012c146109af576040516379f6cefd60e11b815260040160405180910390fd5b610a52604051806101200160405280336001600160a01b031681526020018c6001600160a01b031681526020013481526020018b81526020018a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152505050908252506020810189905260408101889052606001610a3b8688612d8f565b8152602001846001600160a01b0316815250610c48565b90505f806029015f9054906101000a90046001600160a01b03166001600160a01b031663387207786040518163ffffffff1660e01b8152600401602060405180830381865afa158015610aa7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610acb9190612c93565b6028546031546040516303121e5160e61b81526004810192909252602482015233604482015234606482018190529192506001600160a01b0383169163c4879440916084015f604051808303818588803b158015610b27575f80fd5b505af1158015610b39573d5f803e3d5ffd5b5050505050509998505050505050505050565b5f80845f015185602001518660400151876060015188608001518960a00151604051602001610bd69695949392919060f896871b6001600160f81b031916815294151590951b600185015260f09290921b6001600160f01b031916600284015260601b6bffffffffffffffffffffffff191660048301526018820152603881019190915260580190565b6040516020818303038152906040528051906020012090507f72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba5f1b8103610c30576040516369ab735d60e11b815260040160405180910390fd5b610c3d8787838787610dbf565b979650505050505050565b5f805160206131ad833981519152545f90808203610c795760405163dd7e362160e01b815260040160405180910390fd5b60018114610c9a5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad83398151915255602e546001600160a01b031615610d6857602e5483516020850151604080870151606088015160808901516101008a015193516332f3cb8f60e21b81526001600160a01b039097169663cbcf2e3c96610d0d9690959094939291600401612d9b565b602060405180830381865afa158015610d28573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d4c9190612d4a565b610d685760405162c5a6a960e01b815260040160405180910390fd5b6103208360c0015114610d8e5760405163c91cf3b160e01b815260040160405180910390fd5b610d9661232f565b60608101849052610da681611630565b60015f805160206131ad83398151915255949350505050565b5f818103610de057604051634711d60d60e11b815260040160405180910390fd5b5f80805f805f610df08989611818565b93509350935093508395505f610e1d610e168b8b8a888c610e119190612d65565b6118d4565b8d8d61197f565b9050610e298488612d65565b96508115610e9257600b548d1115610e5757604051630103c53560e51b8152600481018e9052602401610302565b5f8d8152600f602052604090205480610e83576040516354b4f24360e11b815260040160405180910390fd5b14965061034195505050505050565b5f8d8152600f602052604090205415610ebe57604051635ed7bea160e11b815260040160405180910390fd5b5f610ec9828f611a26565b90505f8b8b8a818110610ede57610ede612de6565b905060200201355f1c905088610ef390612dfa565b98505f610f10610f098e8e8d610e118b82612d65565b838561197f565b9050610f1c868b612d65565b9950610f2c815f60280154611a81565b985050505050505050505f805f80888887818110610f4c57610f4c612de6565b905060200201355f1c905085610f6190612dfa565b9550608081901c9350806001600160801b031692505f898988818110610f8957610f89612de6565b905060200201355f1c905086610f9e90612dfa565b602954604051633a5083e360e21b8152600481018490529198506001600160a01b03169063e9420f8c90602401602060405180830381865afa158015610fe6573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061100a9190612d4a565b61102757604051636813371360e11b815260040160405180910390fd5b60295460405163e680c4c160e01b8152600481018390526001600160a01b039091169063e680c4c190602401602060405180830381865afa15801561106e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110929190612c93565b92505050806001600160a01b0316637efda2ae8484876110b38d8d8c611ac2565b6040518563ffffffff1660e01b81526004016110d29493929190612e12565b602060405180830381865afa1580156110ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111119190612d4a565b9b9a5050505050505050505050565b6040805160c08101909152602680545f9283929091829060ff16600181111561114b5761114b61299a565b600181111561115c5761115c61299a565b81529054610100810463ffffffff9081166020840152650100000000008204811660408401526901000000000000000000820481166060840152600160681b8204166080830152600160881b90046001600160401b031660a090910152602d54909150600160801b90046001600160801b03165f036111ee5760405163377cd4b960e11b815260040160405180910390fd5b602d545f906001600160801b03600160801b8204811691611210911687612d33565b61121a9190612e82565b90505f80835160018111156112315761123161299a565b0361124457611241826011612d33565b90505b5f82846020015163ffffffff1661125b9190612d33565b90505f846040015163ffffffff16826112749190612e82565b61127e9084612d65565b90505f856060015163ffffffff16836112979190612e82565b8660a001516001600160401b03166112af9190612d65565b90505f8860016112bf8286612d65565b6112c99190612e95565b6112d39190612e82565b90506112df8282611ad8565b9a9950505050505050505050565b6112f5612362565b60405160248101859052604481018490526001600160401b03831660648201525f9060840160408051601f19818403018152918152602080830180516001600160e01b0316632926067d60e11b17905281516101208101909252731111111111111111111111111111111111111111825291925090810161137a620100006002612973565b6001600160a01b031681526020015f81526020015f815260200182815260200163044aa200815260200161032081526020015f6001600160401b038111156113c4576113c46129ae565b6040519080825280602002602001820160405280156113f757816020015b60608152602001906001900390816113e25790505b5081525f60209091015295945050505050565b5f805160206131ad833981519152545f9080820361143b5760405163dd7e362160e01b815260040160405180910390fd5b6001811461145c5760405163558a1e0360e11b815260040160405180910390fd5b60025f805160206131ad833981519152555f6040518060800160405280611481611540565b81526020015f81526020015f426114989190612d65565b6001600160401b0316815260200185905290506114b36123c2565b6114bc82611aed565b80955081925050506114dc81836060015160e00151868560400151611b56565b505060015f805160206131ad8339815191525550919050565b603354601254101561153157604080516060810182528381526001600160401b03831660208201525f9181019190915261153190601090611baa565b61153c603383611c0b565b5050565b5f61154e6033546012541090565b1561155f575060115490565b905090565b61155a6033611c3a565b6040805160c080820183525f8083526020808401829052838501829052606084018290526080840182905260a084018290528451928301855290825260018282015291929091908201906115bf90850185612ea8565b61ffff1681526020016115d56180006008612973565b6001600160a01b031681526020018360200160208101906115f69190612ec1565b6001600160a01b031681526020016116116040850185612edc565b60405161161f929190612f1e565b604051908190039020905292915050565b5f808260600151905060408160e00151511115611660576040516376da24b960e01b815260040160405180910390fd5b611668611540565b835260c081015161167a903a90611120565b6020840181905260a08201515f916116929190612d33565b90508160600151816116a49190612d65565b826040015110156116e55760608201516116be9082612d65565b60408084015190516359c2d1ed60e11b815260048101929092526024820152604401610302565b6116f7826101000151835f0151611c4c565b6001600160a01b03908116610100840152825116321461172a57815161111161111160901b01016001600160a01b031682525b6117345f42612d65565b6001600160401b0316604085015261174a6123c2565b61175385611aed565b809550819250505061177381866060015160e00151868860400151611b56565b6032546001600160a01b03161561181057603254602854604087810151905163d077255160e01b81526004810192909252602482018790526001600160401b031660448201526001600160a01b039091169063d0772551906064016020604051808303815f875af11580156117ea573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061180e9190612d78565b505b505050919050565b5f805f805f86865f81811061182f5761182f612de6565b6020908102929092013592505081901b5f819003611891578160f881901c60011461187357604051631e49d3c160e21b815260f882901c6004820152602401610302565b6001965082871a95508260021a94508260031a1515935061189f9050565b5f9550869450859350600192505b8280156118ab57508315155b156118c957604051630918bf4560e31b815260040160405180910390fd5b505092959194509250565b60606118e08383612e95565b6001600160401b038111156118f7576118f76129ae565b604051908082528060200260200182016040528015611920578160200160208202803683370190505b509050825b828110156119765785858281811061193f5761193f612de6565b905060200201358285836119539190612e95565b8151811061196357611963612de6565b6020908102919091010152600101611925565b50949350505050565b82515f9061198d8482611ca6565b825f5b82811015611a1c576119a3600287612f2d565b156119d9576119d48782815181106119bd576119bd612de6565b6020026020010151835f9182526020526040902090565b611a05565b611a05828883815181106119ef576119ef612de6565b60200260200101515f9182526020526040902090565b9150611a12600287612e82565b9550600101611990565b5095945050505050565b604080517fd82fec4a37cbdc47f1e5cc4ad64deacf34a48e6f7c61fa5b68fd58e543259cf46020820152908101839052606081018290525f906080015b60405160208183030381529060405280519060200120905092915050565b604080517f39bc69363bb9e26cf14240de4e22569e95cf175cfbcf1ade1a47a253b4bf7f616020820152908101839052606081018290525f90608001611a63565b6060611ad0848484816118d4565b949350505050565b5f818311611ae6578161056b565b5090919050565b611af56123c2565b5f611aff83611ceb565b91505f82604051602001611b1391906130aa565b60408051808303601f19018152919052601a54602654919250611b469185918491600160681b900463ffffffff16611e33565b8080519060200120915050915091565b611b6082826114f5565b7f4531cd5795773d7101c17bdeb9f5ab7f47d7056017506f937083be5d6e77a38284610100015183838787604051611b9c9594939291906130bc565b60405180910390a150505050565b6001808301545f81815260208581526040918290208551815590850151918501516001600160c01b031668010000000000000000026001600160401b03909216919091179083015590611bfe908290612d65565b8360010181905550505050565b5f611c196003840183611eed565b5f908152600290940160205250506040909120805460ff1916600117905550565b600381015481545f9161031c91612d65565b5f6001600160a01b038316611c85576001600160a01b0382163214611c7c5761111161111160901b018201611c7e565b815b905061031c565b6001600160a01b0383163b15611ae65761111161111160901b018301611c7e565b6101008110611cc857604051631c50038560e01b815260040160405180910390fd5b6001811b821061153c57604051639bb54c3560e01b815260040160405180910390fd5b611cf36123c2565b5f8260600151905060405180610200016040528060ff8152602001825f01516001600160a01b0316815260200182602001516001600160a01b031681526020018260a0015181526020018260c001518152602001846020015181526020015f81526020015f8152602001845f01518152602001826060015181526020016040518060800160405280846040015181526020018461010001516001600160a01b031681526020015f81526020015f8152508152602001826080015181526020015f6001600160401b03811115611dca57611dca6129ae565b6040519080825280601f01601f191660200182016040528015611df4576020820181803683370190505b508152602001611e078360e00151612079565b8152604080515f8082526020808301845280850192909252825190815290810182529101529392505050565b5f611e4385606001518551612112565b905082811115611e665760405163f0b4e88f60e01b815260040160405180910390fd5b81856080015182611e779190612e82565b1115611eb05781856080015182611e8e9190612e82565b60405163959f26fb60e01b815260048101929092526024820152604401610302565b80611ec78551876101a00151518860800151612149565b1115611ee6576040516347b3b14560e01b815260040160405180910390fd5b5050505050565b5f805f60018560020180549050611f049190612e95565b8554909150855f611f1483612dfa565b9091555092506001811b8303611f96575f856002018281548110611f3a57611f3a612de6565b905f5260205f20015490505f611f5982835f9182526020526040902090565b600288018054600181810183555f9283526020808420909201849055808b0180549182018155835290822001559050611f9183612dfa565b925050505b82845f805b848163ffffffff16101561205a575f611fb5600286612f2d565b159050808015611fc3575082155b15611fe45760018a015f90815260209020849063ffffffff84160155600192505b61203f816120065760018b015f9081526020902063ffffffff84160154612008565b845b8261201c57855f9182526020526040902090565b60028c015f9081526020902063ffffffff851601545f9182526020526040902090565b9350600185901c9450508061205390613149565b9050611f9b565b50600188015f90815260209020829085015550925050505b9250929050565b8051606090806001600160401b03811115612096576120966129ae565b6040519080825280602002602001820160405280156120bf578160200160208202803683370190505b5091505f5b8181101561210b575f6120ef8583815181106120e2576120e2612de6565b60200260200101516121dc565b60018301602002850152506121048160010190565b90506120c4565b5050919050565b5f8061211d836122df565b905080841015612140576040516305c623bf60e31b815260040160405180910390fd5b90920392915050565b5f62028cf561216561215d61067887612d33565b6102206122fa565b61216f9082612d65565b905061217d6109a985612d33565b6121879082612d65565b9050612196816202a5ac611ad8565b90505f6121a4846058612d33565b9050836121b2604087612d33565b6121bc9190612d33565b6121c69082612d65565b90506121d28183612d65565b9695505050505050565b5f602082516121eb9190612f2d565b1561220e5781516040516371be960160e11b815260040161030291815260200190565b5f6020835161221d9190612e82565b905062010000811061224557600160405163043e266b60e41b8152600401610302919061316b565b612250600282612f2d565b5f0361227257600360405163043e266b60e41b8152600401610302919061316b565b6002836040516122829190613191565b602060405180830381855afa15801561229d573d5f803e3d5ffd5b5050506040513d601f19601f820116820180604052508101906122c09190612d78565b60e09190911b6001600160e01b039190911617600160f81b1792915050565b6127105f6122ee83600a612d33565b905061056b8282611ad8565b5f8215612327578161230d600185612e95565b6123179190612e82565b612322906001612d65565b61056b565b505f92915050565b60405180608001604052805f81526020015f81526020015f6001600160401b0316815260200161235d612362565b905290565b6040518061012001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f8152602001606081526020015f81526020015f8152602001606081526020015f6001600160a01b031681525090565b6040518061020001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f815260200161241261243b565b815260200160608152602001606081526020016060815260200160608152602001606081525090565b60405180608001604052806004906020820280368337509192915050565b803561ffff8116811461246a575f80fd5b919050565b5f8083601f84011261247f575f80fd5b5081356001600160401b03811115612495575f80fd5b6020830191508360208260051b8501011115612072575f80fd5b5f805f805f805f60c0888a0312156124c5575f80fd5b8735965060208801359550604088013594506124e360608901612459565b935060808801356001600160401b038111156124fd575f80fd5b6125098a828b0161246f565b90945092505060a088013560028110612520575f80fd5b8091505092959891949750929550565b5f60208284031215612540575f80fd5b81356001600160401b03811115612555575f80fd5b8201610120818503121561056b575f80fd5b5f5b83811015612581578181015183820152602001612569565b50505f910152565b5f81518084526125a0816020860160208601612567565b601f01601f19169290920160200192915050565b602081525f61056b6020830184612589565b5f805f805f8587036101208112156125dc575f80fd5b863595506020870135945060c0603f19820112156125f8575f80fd5b506040860192506101008601356001600160401b03811115612618575f80fd5b6126248882890161246f565b969995985093965092949392505050565b5f8083601f840112612645575f80fd5b5081356001600160401b0381111561265b575f80fd5b602083019150836020828501011115612072575f80fd5b5f805f805f805f60a0888a031215612688575f80fd5b873596506020880135955061269f60408901612459565b945060608801356001600160401b03808211156126ba575f80fd5b6126c68b838c01612635565b909650945060808a01359150808211156126de575f80fd5b506126eb8a828b0161246f565b989b979a50959850939692959293505050565b5f805f805f60808688031215612712575f80fd5b85359450602086013593506040860135925060608601356001600160401b03811115612618575f80fd5b5f805f6060848603121561274e575f80fd5b505081359360208301359350604090920135919050565b80356001600160401b038116811461246a575f80fd5b5f805f6060848603121561278d575f80fd5b83359250602084013591506127a460408501612765565b90509250925092565b6001600160a01b03811681146127c1575f80fd5b50565b803561246a816127ad565b5f805f604084860312156127e1575f80fd5b83356127ec816127ad565b925060208401356001600160401b03811115612806575f80fd5b61281286828701612635565b9497909650939450505050565b5f8060408385031215612830575f80fd5b8235915061284060208401612765565b90509250929050565b5f805f805f6080868803121561285d575f80fd5b853594506020860135935060408601356001600160401b0380821115612881575f80fd5b908701906060828a031215612894575f80fd5b909350606087013590808211156128a9575f80fd5b506126248882890161246f565b5f805f805f805f805f60e08a8c0312156128ce575f80fd5b89356128d9816127ad565b985060208a0135975060408a01356001600160401b03808211156128fb575f80fd5b6129078d838e01612635565b909950975060608c0135965060808c0135955060a08c013591508082111561292d575f80fd5b5061293a8c828d0161246f565b90945092505060c08a013561294e816127ad565b809150509295985092959850929598565b634e487b7160e01b5f52601160045260245ffd5b6001600160a01b038181168382160190808211156129935761299361295f565b5092915050565b634e487b7160e01b5f52602160045260245ffd5b634e487b7160e01b5f52604160045260245ffd5b60405161012081016001600160401b03811182821017156129e5576129e56129ae565b60405290565b604051601f8201601f191681016001600160401b0381118282101715612a1357612a136129ae565b604052919050565b5f82601f830112612a2a575f80fd5b81356001600160401b03811115612a4357612a436129ae565b612a56601f8201601f19166020016129eb565b818152846020838601011115612a6a575f80fd5b816020850160208301375f918101602001919091529392505050565b5f6001600160401b0380841115612a9f57612a9f6129ae565b8360051b6020612ab1602083016129eb565b8681529350908401906020840187831115612aca575f80fd5b855b83811015612afc57803585811115612ae2575f80fd5b612aee8a828a01612a1b565b835250908201908201612acc565b50505050509392505050565b5f82601f830112612b17575f80fd5b61056b83833560208501612a86565b5f6101208236031215612b37575f80fd5b612b3f6129c2565b612b48836127c4565b8152612b56602084016127c4565b6020820152604083013560408201526060830135606082015260808301356001600160401b0380821115612b88575f80fd5b612b9436838701612a1b565b608084015260a085013560a084015260c085013560c084015260e0850135915080821115612bc0575f80fd5b50612bcd36828601612b08565b60e083015250610100612be18185016127c4565b9082015292915050565b80151581146127c1575f80fd5b5f60c08284031215612c08575f80fd5b60405160c081018181106001600160401b0382111715612c2a57612c2a6129ae565b604052823560ff81168114612c3d575f80fd5b81526020830135612c4d81612beb565b6020820152612c5e60408401612459565b60408201526060830135612c71816127ad565b60608201526080838101359082015260a0928301359281019290925250919050565b5f60208284031215612ca3575f80fd5b815161056b816127ad565b88815287602082015286604082015261ffff8616606082015260c060808201528360c0820152838560e08301375f60e08583018101829052601f19601f8701168301838103820160a08501529081018490526101006001600160fb1b03851115612d16575f80fd5b8460051b80878385013791909101019a9950505050505050505050565b808202811582820484141761031c5761031c61295f565b5f60208284031215612d5a575f80fd5b815161056b81612beb565b8082018082111561031c5761031c61295f565b5f60208284031215612d88575f80fd5b5051919050565b5f61056b368484612a86565b5f60018060a01b038089168352808816602084015286604084015285606084015260c06080840152612dd060c0840186612589565b915080841660a084015250979650505050505050565b634e487b7160e01b5f52603260045260245ffd5b5f60018201612e0b57612e0b61295f565b5060010190565b5f6080820186835260208660208501528560408501526080606085015281855180845260a0860191506020870193505f5b81811015612e5f57845183529383019391830191600101612e43565b50909998505050505050505050565b634e487b7160e01b5f52601260045260245ffd5b5f82612e9057612e90612e6e565b500490565b8181038181111561031c5761031c61295f565b5f60208284031215612eb8575f80fd5b61056b82612459565b5f60208284031215612ed1575f80fd5b813561056b816127ad565b5f808335601e19843603018112612ef1575f80fd5b8301803591506001600160401b03821115612f0a575f80fd5b602001915036819003821315612072575f80fd5b818382375f9101908152919050565b5f82612f3b57612f3b612e6e565b500690565b805f5b6004811015612f62578151845260209384019390910190600101612f43565b50505050565b5f815180845260208085019450602084015f5b83811015612f9757815187529582019590820190600101612f7b565b509495945050505050565b5f610260825184526020830151602085015260408301516040850152606083015160608501526080830151608085015260a083015160a085015260c083015160c085015260e083015160e08501526101008084015181860152506101208084015181860152506101408084015161301b82870182612f40565b50506101608301516101c0828187015261303783870183612589565b925061018085015191506101e0868403818801526130558484612589565b93506101a086015192508684036102008801526130728484612f68565b935081860151925086840361022088015261308d8484612589565b935080860151925050508482036102408601526103418282612589565b602081525f61056b6020830184612fa2565b8581525f602086818401526001600160401b038616604084015260a060608401526130ea60a0840186612fa2565b8381036080850152845180825282820190600581901b830184018488015f5b8381101561313757601f19868403018552613125838351612589565b94870194925090860190600101613109565b50909c9b505050505050505050505050565b5f63ffffffff8083168181036131615761316161295f565b6001019392505050565b602081016004831061318b57634e487b7160e01b5f52602160045260245ffd5b91905290565b5f82516131a2818460208701612567565b919091019291505056fe8e94fed44239eb2314ab7a406345e6c5a8f0ccedf3b600de3d004e672c33abf4a2646970667358221220030464931900332d991c119f9018758bbe9edae5863b1f9265c67dafd32ab74c64736f6c63430008180033

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.

OSZAR »