Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Method | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|---|
0x60e06040 | 7941045 | 66 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x8A822fDb...3DE1F97Df The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
Bridgehub
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {EnumerableMap} from "@openzeppelin/contracts-v4/utils/structs/EnumerableMap.sol"; import {Ownable2StepUpgradeable} from "@openzeppelin/contracts-upgradeable-v4/access/Ownable2StepUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable-v4/security/PausableUpgradeable.sol"; import {IBridgehub, L2TransactionRequestDirect, L2TransactionRequestTwoBridgesOuter, L2TransactionRequestTwoBridgesInner, BridgehubMintCTMAssetData, BridgehubBurnCTMAssetData} from "./IBridgehub.sol"; import {IAssetRouterBase} from "../bridge/asset-router/IAssetRouterBase.sol"; import {IL1AssetRouter} from "../bridge/asset-router/IL1AssetRouter.sol"; import {IL1BaseTokenAssetHandler} from "../bridge/interfaces/IL1BaseTokenAssetHandler.sol"; import {IChainTypeManager} from "../state-transition/IChainTypeManager.sol"; import {ReentrancyGuard} from "../common/ReentrancyGuard.sol"; import {DataEncoding} from "../common/libraries/DataEncoding.sol"; import {IZKChain} from "../state-transition/chain-interfaces/IZKChain.sol"; import {ETH_TOKEN_ADDRESS, TWO_BRIDGES_MAGIC_VALUE, BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS, SETTLEMENT_LAYER_RELAY_SENDER, L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS} from "../common/Config.sol"; import {BridgehubL2TransactionRequest, L2Message, L2Log, TxStatus} from "../common/Messaging.sol"; import {AddressAliasHelper} from "../vendor/AddressAliasHelper.sol"; import {IMessageRoot} from "./IMessageRoot.sol"; import {ICTMDeploymentTracker} from "./ICTMDeploymentTracker.sol"; import {NotL1, NotRelayedSender, NotAssetRouter, ChainIdAlreadyPresent, ChainNotPresentInCTM, SecondBridgeAddressTooLow, NotInGatewayMode, SLNotWhitelisted, IncorrectChainAssetId, NotCurrentSL, HyperchainNotRegistered, IncorrectSender, AlreadyCurrentSL, ChainNotLegacy} from "./L1BridgehubErrors.sol"; import {NoCTMForAssetId, SettlementLayersMustSettleOnL1, MigrationPaused, AssetIdAlreadyRegistered, ChainIdNotRegistered, AssetHandlerNotRegistered, ZKChainLimitReached, CTMAlreadyRegistered, CTMNotRegistered, ZeroChainId, ChainIdTooBig, BridgeHubAlreadyRegistered, MsgValueMismatch, ZeroAddress, Unauthorized, SharedBridgeNotSet, WrongMagicValue, ChainIdAlreadyExists, ChainIdMismatch, ChainIdCantBeCurrentChain, EmptyAssetId, AssetIdNotSupported, IncorrectBridgeHubAddress} from "../common/L1ContractErrors.sol"; import {AssetHandlerModifiers} from "../bridge/interfaces/AssetHandlerModifiers.sol"; /// @author Matter Labs /// @custom:security-contact [email protected] /// @dev The Bridgehub contract serves as the primary entry point for L1->L2 communication, /// facilitating interactions between end user and bridges. /// It also manages state transition managers, base tokens, and chain registrations. /// Bridgehub is also an IL1AssetHandler for the chains themselves, which is used to migrate the chains /// between different settlement layers (for example from L1 to Gateway). contract Bridgehub is IBridgehub, ReentrancyGuard, Ownable2StepUpgradeable, PausableUpgradeable, AssetHandlerModifiers { using EnumerableMap for EnumerableMap.UintToAddressMap; /// @notice the asset id of Eth. This is only used on L1. bytes32 internal immutable ETH_TOKEN_ASSET_ID; /// @notice The chain id of L1. This contract can be deployed on multiple layers, but this value is still equal to the /// L1 that is at the most base layer. uint256 public immutable L1_CHAIN_ID; /// @notice The total number of ZK chains can be created/connected to this CTM. /// This is the temporary security measure. uint256 public immutable MAX_NUMBER_OF_ZK_CHAINS; /// @notice all the ether and ERC20 tokens are held by NativeVaultToken managed by the asset router. address public assetRouter; /// @notice ChainTypeManagers that are registered, and ZKchains that use these CTMs can use this bridgehub as settlement layer. mapping(address chainTypeManager => bool) public chainTypeManagerIsRegistered; /// @notice we store registered tokens (for arbitrary base token) mapping(address baseToken => bool) public __DEPRECATED_tokenIsRegistered; /// @notice chainID => ChainTypeManager contract address, CTM that is managing rules for a given ZKchain. mapping(uint256 chainId => address) public chainTypeManager; /// @notice chainID => baseToken contract address, token that is used as 'base token' by a given child chain. // slither-disable-next-line uninitialized-state mapping(uint256 chainId => address) public __DEPRECATED_baseToken; /// @dev used to manage non critical updates address public admin; /// @dev used to accept the admin role address private pendingAdmin; /// @notice The map from chainId => zkChain contract EnumerableMap.UintToAddressMap internal zkChainMap; /// @notice The contract that stores the cross-chain message root for each chain and the aggregated root. /// @dev Note that the message root does not contain messages from the chain it is deployed on. It may /// be added later on if needed. IMessageRoot public override messageRoot; /// @notice Mapping from chain id to encoding of the base token used for deposits / withdrawals mapping(uint256 chainId => bytes32) public baseTokenAssetId; /// @notice The deployment tracker for the state transition managers. /// @dev The L1 address of the ctm deployer is provided. ICTMDeploymentTracker public l1CtmDeployer; /// @dev asset info used to identify chains in the Shared Bridge mapping(bytes32 ctmAssetId => address ctmAddress) public ctmAssetIdToAddress; /// @dev ctmAddress to ctmAssetId mapping(address ctmAddress => bytes32 ctmAssetId) public ctmAssetIdFromAddress; /// @dev used to indicate the currently active settlement layer for a given chainId mapping(uint256 chainId => uint256 activeSettlementLayerChainId) public settlementLayer; /// @notice shows whether the given chain can be used as a settlement layer. /// @dev the Gateway will be one of the possible settlement layers. The L1 is also a settlement layer. /// @dev Sync layer chain is expected to have .. as the base token. mapping(uint256 chainId => bool isWhitelistedSettlementLayer) public whitelistedSettlementLayers; /// @notice we store registered assetIds (for arbitrary base token) mapping(bytes32 baseTokenAssetId => bool) public assetIdIsRegistered; /// @notice used to pause the migrations of chains. Used for upgrades. bool public migrationPaused; modifier onlyOwnerOrAdmin() { if (msg.sender != admin && msg.sender != owner()) { revert Unauthorized(msg.sender); } _; } modifier onlyL1() { if (L1_CHAIN_ID != block.chainid) { revert NotL1(L1_CHAIN_ID, block.chainid); } _; } modifier onlySettlementLayerRelayedSender() { /// There is no sender for the wrapping, we use a virtual address. if (msg.sender != SETTLEMENT_LAYER_RELAY_SENDER) { revert NotRelayedSender(msg.sender, SETTLEMENT_LAYER_RELAY_SENDER); } _; } modifier onlyAssetRouter() { if (msg.sender != assetRouter) { revert NotAssetRouter(msg.sender, assetRouter); } _; } modifier whenMigrationsNotPaused() { if (migrationPaused) { revert MigrationPaused(); } _; } /// @notice to avoid parity hack constructor(uint256 _l1ChainId, address _owner, uint256 _maxNumberOfZKChains) reentrancyGuardInitializer { _disableInitializers(); L1_CHAIN_ID = _l1ChainId; MAX_NUMBER_OF_ZK_CHAINS = _maxNumberOfZKChains; // Note that this assumes that the bridgehub only accepts transactions on chains with ETH base token only. // This is indeed true, since the only methods where this immutable is used are the ones with `onlyL1` modifier. // We will change this with interop. ETH_TOKEN_ASSET_ID = DataEncoding.encodeNTVAssetId(L1_CHAIN_ID, ETH_TOKEN_ADDRESS); _transferOwnership(_owner); _initializeInner(); } /// @notice used to initialize the contract /// @notice this contract is also deployed on L2 as a system contract there the owner and the related functions will not be used /// @param _owner the owner of the contract function initialize(address _owner) external reentrancyGuardInitializer onlyL1 { _transferOwnership(_owner); _initializeInner(); } /// @notice Used to initialize the contract on L1 function initializeV2() external initializer onlyL1 { _initializeInner(); } /// @notice Initializes the contract function _initializeInner() internal { assetIdIsRegistered[ETH_TOKEN_ASSET_ID] = true; whitelistedSettlementLayers[L1_CHAIN_ID] = true; } //// Initialization and registration /// @inheritdoc IBridgehub /// @dev Please note, if the owner wants to enforce the admin change it must execute both `setPendingAdmin` and /// `acceptAdmin` atomically. Otherwise `admin` can set different pending admin and so fail to accept the admin rights. function setPendingAdmin(address _newPendingAdmin) external onlyOwnerOrAdmin { if (_newPendingAdmin == address(0)) { revert ZeroAddress(); } // Save previous value into the stack to put it into the event later address oldPendingAdmin = pendingAdmin; // Change pending admin pendingAdmin = _newPendingAdmin; emit NewPendingAdmin(oldPendingAdmin, _newPendingAdmin); } /// @inheritdoc IBridgehub function acceptAdmin() external { address currentPendingAdmin = pendingAdmin; // Only proposed by current admin address can claim the admin rights if (msg.sender != currentPendingAdmin) { revert Unauthorized(msg.sender); } address previousAdmin = admin; admin = currentPendingAdmin; delete pendingAdmin; emit NewPendingAdmin(currentPendingAdmin, address(0)); emit NewAdmin(previousAdmin, currentPendingAdmin); } /// @notice To set the addresses of some of the ecosystem contracts, only Owner. Not done in initialize, as /// the order of deployment is Bridgehub, other contracts, and then we call this. /// @param _assetRouter the shared bridge address /// @param _l1CtmDeployer the ctm deployment tracker address. Note, that the address of the L1 CTM deployer is provided. /// @param _messageRoot the message root address function setAddresses( address _assetRouter, ICTMDeploymentTracker _l1CtmDeployer, IMessageRoot _messageRoot ) external onlyOwner { assetRouter = _assetRouter; l1CtmDeployer = _l1CtmDeployer; messageRoot = _messageRoot; } /// @notice Used to set the legacy chain data for the upgrade. /// @param _chainId The chainId of the legacy chain we are migrating. function registerLegacyChain(uint256 _chainId) external override onlyL1 { address ctm = chainTypeManager[_chainId]; if (ctm == address(0)) { revert ChainNotLegacy(); } if (zkChainMap.contains(_chainId)) { revert ChainIdAlreadyPresent(); } // From now on, since `zkChainMap` did not contain the chain, we assume // that the chain is a legacy chain in the process of migration, i.e. // its stored `baseTokenAssetId`, etc. address token = __DEPRECATED_baseToken[_chainId]; if (token == address(0)) { revert ChainNotLegacy(); } bytes32 assetId = DataEncoding.encodeNTVAssetId(block.chainid, token); baseTokenAssetId[_chainId] = assetId; assetIdIsRegistered[assetId] = true; address chainAddress = IChainTypeManager(ctm).getZKChainLegacy(_chainId); if (chainAddress == address(0)) { revert ChainNotPresentInCTM(); } _registerNewZKChain(_chainId, chainAddress, false); messageRoot.addNewChain(_chainId); settlementLayer[_chainId] = block.chainid; } //// Registry /// @notice Chain Type Manager can be any contract with the appropriate interface/functionality /// @param _chainTypeManager the state transition manager address to be added function addChainTypeManager(address _chainTypeManager) external onlyOwner { if (_chainTypeManager == address(0)) { revert ZeroAddress(); } if (chainTypeManagerIsRegistered[_chainTypeManager]) { revert CTMAlreadyRegistered(); } chainTypeManagerIsRegistered[_chainTypeManager] = true; emit ChainTypeManagerAdded(_chainTypeManager); } /// @notice Chain Type Manager can be any contract with the appropriate interface/functionality /// @notice this stops new Chains from using the CTM, old chains are not affected /// @param _chainTypeManager the state transition manager address to be removed function removeChainTypeManager(address _chainTypeManager) external onlyOwner { if (_chainTypeManager == address(0)) { revert ZeroAddress(); } if (!chainTypeManagerIsRegistered[_chainTypeManager]) { revert CTMNotRegistered(); } chainTypeManagerIsRegistered[_chainTypeManager] = false; emit ChainTypeManagerRemoved(_chainTypeManager); } /// @notice asset id can represent any token contract with the appropriate interface/functionality /// @param _baseTokenAssetId asset id of base token to be registered function addTokenAssetId(bytes32 _baseTokenAssetId) external onlyOwnerOrAdmin { if (assetIdIsRegistered[_baseTokenAssetId]) { revert AssetIdAlreadyRegistered(); } assetIdIsRegistered[_baseTokenAssetId] = true; emit BaseTokenAssetIdRegistered(_baseTokenAssetId); } /// @notice Used to register a chain as a settlement layer. /// @param _newSettlementLayerChainId the chainId of the chain /// @param _isWhitelisted whether the chain is a whitelisted settlement layer function registerSettlementLayer( uint256 _newSettlementLayerChainId, bool _isWhitelisted ) external onlyOwner onlyL1 { if (settlementLayer[_newSettlementLayerChainId] != block.chainid) { revert SettlementLayersMustSettleOnL1(); } whitelistedSettlementLayers[_newSettlementLayerChainId] = _isWhitelisted; emit SettlementLayerRegistered(_newSettlementLayerChainId, _isWhitelisted); } /// @dev Used to set the assetAddress for a given assetInfo. /// @param _additionalData the additional data to identify the asset /// @param _assetAddress the asset handler address function setCTMAssetAddress(bytes32 _additionalData, address _assetAddress) external { // It is a simplified version of the logic used by the AssetRouter to manage asset handlers. // CTM's assetId is `keccak256(abi.encode(L1_CHAIN_ID, l1CtmDeployer, ctmAddress))`. // And the l1CtmDeployer is considered the deployment tracker for the CTM asset. // // The l1CtmDeployer will call this method to set the asset handler address for the assetId. // If the chain is not the same as L1, we assume that it is done via L1->L2 communication and so we unalias the sender. // // For simpler handling we allow anyone to call this method. It is okay, since during bridging operations // it is double checked that `assetId` is indeed derived from the `l1CtmDeployer`. // TODO(EVM-703): This logic should be revised once interchain communication is implemented. address sender = L1_CHAIN_ID == block.chainid ? msg.sender : AddressAliasHelper.undoL1ToL2Alias(msg.sender); // This method can be accessed by l1CtmDeployer only if (sender != address(l1CtmDeployer)) { revert Unauthorized(sender); } if (!chainTypeManagerIsRegistered[_assetAddress]) { revert CTMNotRegistered(); } bytes32 ctmAssetId = DataEncoding.encodeAssetId(L1_CHAIN_ID, _additionalData, sender); ctmAssetIdToAddress[ctmAssetId] = _assetAddress; ctmAssetIdFromAddress[_assetAddress] = ctmAssetId; emit AssetRegistered(ctmAssetId, _assetAddress, _additionalData, msg.sender); } /*////////////////////////////////////////////////////////////// Chain Registration //////////////////////////////////////////////////////////////*/ /// @notice register new chain. New chains can be only registered on Bridgehub deployed on L1. Later they can be moved to any other layer. /// @notice for Eth the baseToken address is 1 /// @param _chainId the chainId of the chain /// @param _chainTypeManager the state transition manager address /// @param _baseTokenAssetId the base token asset id of the chain /// @param _salt the salt for the chainId, currently not used /// @param _admin the admin of the chain /// @param _initData the fixed initialization data for the chain /// @param _factoryDeps the factory dependencies for the chain's deployment function createNewChain( uint256 _chainId, address _chainTypeManager, bytes32 _baseTokenAssetId, // solhint-disable-next-line no-unused-vars uint256 _salt, address _admin, bytes calldata _initData, bytes[] calldata _factoryDeps ) external onlyOwnerOrAdmin nonReentrant whenNotPaused onlyL1 returns (uint256) { _validateChainParams({_chainId: _chainId, _assetId: _baseTokenAssetId, _chainTypeManager: _chainTypeManager}); chainTypeManager[_chainId] = _chainTypeManager; baseTokenAssetId[_chainId] = _baseTokenAssetId; settlementLayer[_chainId] = block.chainid; address chainAddress = IChainTypeManager(_chainTypeManager).createNewChain({ _chainId: _chainId, _baseTokenAssetId: _baseTokenAssetId, _admin: _admin, _initData: _initData, _factoryDeps: _factoryDeps }); _registerNewZKChain(_chainId, chainAddress, true); messageRoot.addNewChain(_chainId); emit NewChain(_chainId, _chainTypeManager, _admin); return _chainId; } /// @notice This internal function is used to register a new zkChain in the system. /// @param _chainId The chain ID of the ZK chain /// @param _zkChain The address of the ZK chain's DiamondProxy contract. /// @param _checkMaxNumberOfZKChains Whether to check that the limit for the number /// of chains has not been crossed. /// @dev Providing `_checkMaxNumberOfZKChains = false` may be preferable in cases /// where we want to guarantee that a chain can be added. These include: /// - Migration of a chain from the mapping in the old CTM /// - Migration of a chain to a new settlement layer function _registerNewZKChain(uint256 _chainId, address _zkChain, bool _checkMaxNumberOfZKChains) internal { // slither-disable-next-line unused-return zkChainMap.set(_chainId, _zkChain); if (_checkMaxNumberOfZKChains && zkChainMap.length() > MAX_NUMBER_OF_ZK_CHAINS) { revert ZKChainLimitReached(); } } /*////////////////////////////////////////////////////////////// Getters //////////////////////////////////////////////////////////////*/ /// @notice baseToken function, which takes chainId as input, reads assetHandler from AR, and tokenAddress from AH function baseToken(uint256 _chainId) public view returns (address) { bytes32 baseTokenAssetId = baseTokenAssetId[_chainId]; address assetHandlerAddress = IAssetRouterBase(assetRouter).assetHandlerAddress(baseTokenAssetId); // It is possible that the asset handler is not deployed for a chain on the current layer. // In this case we throw an error. if (assetHandlerAddress == address(0)) { revert AssetHandlerNotRegistered(baseTokenAssetId); } return IL1BaseTokenAssetHandler(assetHandlerAddress).tokenAddress(baseTokenAssetId); } /// @notice Returns all the registered zkChain addresses function getAllZKChains() public view override returns (address[] memory chainAddresses) { uint256[] memory keys = zkChainMap.keys(); chainAddresses = new address[](keys.length); uint256 keysLength = keys.length; for (uint256 i = 0; i < keysLength; ++i) { chainAddresses[i] = zkChainMap.get(keys[i]); } } /// @notice Returns all the registered zkChain chainIDs function getAllZKChainChainIDs() public view override returns (uint256[] memory) { return zkChainMap.keys(); } /// @notice Returns the address of the ZK chain with the corresponding chainID /// @param _chainId the chainId of the chain /// @return chainAddress the address of the ZK chain function getZKChain(uint256 _chainId) public view override returns (address chainAddress) { // slither-disable-next-line unused-return (, chainAddress) = zkChainMap.tryGet(_chainId); } function ctmAssetIdFromChainId(uint256 _chainId) public view override returns (bytes32) { address ctmAddress = chainTypeManager[_chainId]; if (ctmAddress == address(0)) { revert ChainIdNotRegistered(_chainId); } return ctmAssetIdFromAddress[ctmAddress]; } /*////////////////////////////////////////////////////////////// Mailbox forwarder //////////////////////////////////////////////////////////////*/ /// @notice the mailbox is called directly after the assetRouter received the deposit /// this assumes that either ether is the base token or /// the msg.sender has approved mintValue allowance for the nativeTokenVault. /// This means this is not ideal for contract calls, as the contract would have to handle token allowance of the base Token. /// In case allowance is provided to the Asset Router, then it will be transferred to NTV. function requestL2TransactionDirect( L2TransactionRequestDirect calldata _request ) external payable override nonReentrant whenNotPaused onlyL1 returns (bytes32 canonicalTxHash) { // Note: If the ZK chain with corresponding `chainId` is not yet created, // the transaction will revert on `bridgehubRequestL2Transaction` as call to zero address. { bytes32 tokenAssetId = baseTokenAssetId[_request.chainId]; if (tokenAssetId == ETH_TOKEN_ASSET_ID) { if (msg.value != _request.mintValue) { revert MsgValueMismatch(_request.mintValue, msg.value); } } else { if (msg.value != 0) { revert MsgValueMismatch(0, msg.value); } } // slither-disable-next-line arbitrary-send-eth IL1AssetRouter(assetRouter).bridgehubDepositBaseToken{value: msg.value}( _request.chainId, tokenAssetId, msg.sender, _request.mintValue ); } canonicalTxHash = _sendRequest( _request.chainId, _request.refundRecipient, BridgehubL2TransactionRequest({ sender: msg.sender, contractL2: _request.l2Contract, mintValue: _request.mintValue, l2Value: _request.l2Value, l2Calldata: _request.l2Calldata, l2GasLimit: _request.l2GasLimit, l2GasPerPubdataByteLimit: _request.l2GasPerPubdataByteLimit, factoryDeps: _request.factoryDeps, refundRecipient: address(0) }) ); } /// @notice After depositing funds to the assetRouter, the secondBridge is called /// to return the actual L2 message which is sent to the Mailbox. /// This assumes that either ether is the base token or /// the msg.sender has approved the nativeTokenVault with the mintValue, /// and also the necessary approvals are given for the second bridge. /// In case allowance is provided to the Shared Bridge, then it will be transferred to NTV. /// @notice The logic of this bridge is to allow easy depositing for bridges. /// Each contract that handles the users ERC20 tokens needs approvals from the user, this contract allows /// the user to approve for each token only its respective bridge /// @notice This function is great for contract calls to L2, the secondBridge can be any contract. /// @param _request the request for the L2 transaction function requestL2TransactionTwoBridges( L2TransactionRequestTwoBridgesOuter calldata _request ) external payable override nonReentrant whenNotPaused onlyL1 returns (bytes32 canonicalTxHash) { if (_request.secondBridgeAddress <= BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS) { revert SecondBridgeAddressTooLow(_request.secondBridgeAddress, BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS); } { bytes32 tokenAssetId = baseTokenAssetId[_request.chainId]; uint256 baseTokenMsgValue; if (tokenAssetId == ETH_TOKEN_ASSET_ID) { if (msg.value != _request.mintValue + _request.secondBridgeValue) { revert MsgValueMismatch(_request.mintValue + _request.secondBridgeValue, msg.value); } baseTokenMsgValue = _request.mintValue; } else { if (msg.value != _request.secondBridgeValue) { revert MsgValueMismatch(_request.secondBridgeValue, msg.value); } baseTokenMsgValue = 0; } // slither-disable-next-line arbitrary-send-eth IL1AssetRouter(assetRouter).bridgehubDepositBaseToken{value: baseTokenMsgValue}( _request.chainId, tokenAssetId, msg.sender, _request.mintValue ); } // slither-disable-next-line arbitrary-send-eth L2TransactionRequestTwoBridgesInner memory outputRequest = IL1AssetRouter(_request.secondBridgeAddress) .bridgehubDeposit{value: _request.secondBridgeValue}( _request.chainId, msg.sender, _request.l2Value, _request.secondBridgeCalldata ); if (outputRequest.magicValue != TWO_BRIDGES_MAGIC_VALUE) { revert WrongMagicValue(uint256(TWO_BRIDGES_MAGIC_VALUE), uint256(outputRequest.magicValue)); } canonicalTxHash = _sendRequest( _request.chainId, _request.refundRecipient, BridgehubL2TransactionRequest({ sender: _request.secondBridgeAddress, contractL2: outputRequest.l2Contract, mintValue: _request.mintValue, l2Value: _request.l2Value, l2Calldata: outputRequest.l2Calldata, l2GasLimit: _request.l2GasLimit, l2GasPerPubdataByteLimit: _request.l2GasPerPubdataByteLimit, factoryDeps: outputRequest.factoryDeps, refundRecipient: address(0) }) ); IL1AssetRouter(_request.secondBridgeAddress).bridgehubConfirmL2Transaction( _request.chainId, outputRequest.txDataHash, canonicalTxHash ); } /// @notice This function is used to send a request to the ZK chain. /// @param _chainId the chainId of the chain /// @param _refundRecipient the refund recipient /// @param _request the request /// @return canonicalTxHash the canonical transaction hash function _sendRequest( uint256 _chainId, address _refundRecipient, BridgehubL2TransactionRequest memory _request ) internal returns (bytes32 canonicalTxHash) { address refundRecipient = AddressAliasHelper.actualRefundRecipient(_refundRecipient, msg.sender); _request.refundRecipient = refundRecipient; address zkChain = zkChainMap.get(_chainId); canonicalTxHash = IZKChain(zkChain).bridgehubRequestL2Transaction(_request); } /// @notice Used to forward a transaction on the gateway to the chains mailbox (from L1). /// @param _chainId the chainId of the chain /// @param _canonicalTxHash the canonical transaction hash /// @param _expirationTimestamp the expiration timestamp for the transaction function forwardTransactionOnGateway( uint256 _chainId, bytes32 _canonicalTxHash, uint64 _expirationTimestamp ) external override onlySettlementLayerRelayedSender { if (L1_CHAIN_ID == block.chainid) { revert NotInGatewayMode(); } address zkChain = zkChainMap.get(_chainId); IZKChain(zkChain).bridgehubRequestL2TransactionOnGateway(_canonicalTxHash, _expirationTimestamp); } /// @notice forwards function call to Mailbox based on ChainId /// @param _chainId The chain ID of the ZK chain where to prove L2 message inclusion. /// @param _batchNumber The executed L2 batch number in which the message appeared /// @param _index The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _message Information about the sent message: sender address, the message itself, tx index in the L2 batch where the message was sent /// @param _proof Merkle proof for inclusion of L2 log that was sent with the message /// @return Whether the proof is valid function proveL2MessageInclusion( uint256 _chainId, uint256 _batchNumber, uint256 _index, L2Message calldata _message, bytes32[] calldata _proof ) external view override returns (bool) { address zkChain = zkChainMap.get(_chainId); return IZKChain(zkChain).proveL2MessageInclusion(_batchNumber, _index, _message, _proof); } /// @notice forwards function call to Mailbox based on ChainId /// @param _chainId The chain ID of the ZK chain where to prove L2 log inclusion. /// @param _batchNumber The executed L2 batch number in which the log appeared /// @param _index The position of the l2log in the L2 logs Merkle tree /// @param _log Information about the sent log /// @param _proof Merkle proof for inclusion of the L2 log /// @return Whether the proof is correct and L2 log is included in batch function proveL2LogInclusion( uint256 _chainId, uint256 _batchNumber, uint256 _index, L2Log calldata _log, bytes32[] calldata _proof ) external view override returns (bool) { address zkChain = zkChainMap.get(_chainId); return IZKChain(zkChain).proveL2LogInclusion(_batchNumber, _index, _log, _proof); } /// @notice forwards function call to Mailbox based on ChainId /// @param _chainId The chain ID of the ZK chain where to prove L1->L2 tx status. /// @param _l2TxHash The L2 canonical transaction hash /// @param _l2BatchNumber The L2 batch number where the transaction was processed /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction /// @param _status The execution status of the L1 -> L2 transaction (true - success & 0 - fail) /// @return Whether the proof is correct and the transaction was actually executed with provided status /// NOTE: It may return `false` for incorrect proof, but it doesn't mean that the L1 -> L2 transaction has an opposite status! function proveL1ToL2TransactionStatus( uint256 _chainId, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof, TxStatus _status ) external view override returns (bool) { address zkChain = zkChainMap.get(_chainId); return IZKChain(zkChain).proveL1ToL2TransactionStatus({ _l2TxHash: _l2TxHash, _l2BatchNumber: _l2BatchNumber, _l2MessageIndex: _l2MessageIndex, _l2TxNumberInBatch: _l2TxNumberInBatch, _merkleProof: _merkleProof, _status: _status }); } /// @notice forwards function call to Mailbox based on ChainId function l2TransactionBaseCost( uint256 _chainId, uint256 _gasPrice, uint256 _l2GasLimit, uint256 _l2GasPerPubdataByteLimit ) external view returns (uint256) { address zkChain = zkChainMap.get(_chainId); return IZKChain(zkChain).l2TransactionBaseCost(_gasPrice, _l2GasLimit, _l2GasPerPubdataByteLimit); } /*////////////////////////////////////////////////////////////// Chain migration //////////////////////////////////////////////////////////////*/ /// @notice IL1AssetHandler interface, used to migrate (transfer) a chain to the settlement layer. /// @param _settlementChainId the chainId of the settlement chain, i.e. where the message and the migrating chain is sent. /// @param _assetId the assetId of the migrating chain's CTM /// @param _originalCaller the message sender initiated a set of calls that leads to bridge burn /// @param _data the data for the migration function bridgeBurn( uint256 _settlementChainId, uint256 _l2MsgValue, bytes32 _assetId, address _originalCaller, bytes calldata _data ) external payable override requireZeroValue(_l2MsgValue + msg.value) onlyAssetRouter whenMigrationsNotPaused returns (bytes memory bridgehubMintData) { if (!whitelistedSettlementLayers[_settlementChainId]) { revert SLNotWhitelisted(); } BridgehubBurnCTMAssetData memory bridgehubBurnData = abi.decode(_data, (BridgehubBurnCTMAssetData)); if (_assetId != ctmAssetIdFromChainId(bridgehubBurnData.chainId)) { revert IncorrectChainAssetId(_assetId, ctmAssetIdFromChainId(bridgehubBurnData.chainId)); } if (settlementLayer[bridgehubBurnData.chainId] != block.chainid) { revert NotCurrentSL(settlementLayer[bridgehubBurnData.chainId], block.chainid); } settlementLayer[bridgehubBurnData.chainId] = _settlementChainId; if (whitelistedSettlementLayers[bridgehubBurnData.chainId]) { revert SettlementLayersMustSettleOnL1(); } address zkChain = zkChainMap.get(bridgehubBurnData.chainId); if (zkChain == address(0)) { revert HyperchainNotRegistered(); } if (_originalCaller != IZKChain(zkChain).getAdmin()) { revert IncorrectSender(_originalCaller, IZKChain(zkChain).getAdmin()); } bytes memory ctmMintData = IChainTypeManager(chainTypeManager[bridgehubBurnData.chainId]).forwardedBridgeBurn( bridgehubBurnData.chainId, bridgehubBurnData.ctmData ); bytes memory chainMintData = IZKChain(zkChain).forwardedBridgeBurn( _settlementChainId == L1_CHAIN_ID ? L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS : zkChainMap.get(_settlementChainId), _originalCaller, bridgehubBurnData.chainData ); BridgehubMintCTMAssetData memory bridgeMintStruct = BridgehubMintCTMAssetData({ chainId: bridgehubBurnData.chainId, baseTokenAssetId: baseTokenAssetId[bridgehubBurnData.chainId], ctmData: ctmMintData, chainData: chainMintData }); bridgehubMintData = abi.encode(bridgeMintStruct); emit MigrationStarted(bridgehubBurnData.chainId, _assetId, _settlementChainId); } /// @dev IL1AssetHandler interface, used to receive a chain on the settlement layer. /// @param _assetId the assetId of the chain's CTM /// @param _bridgehubMintData the data for the mint function bridgeMint( uint256, // originChainId bytes32 _assetId, bytes calldata _bridgehubMintData ) external payable override requireZeroValue(msg.value) onlyAssetRouter whenMigrationsNotPaused { BridgehubMintCTMAssetData memory bridgehubMintData = abi.decode( _bridgehubMintData, (BridgehubMintCTMAssetData) ); address ctm = ctmAssetIdToAddress[_assetId]; if (ctm == address(0)) { revert NoCTMForAssetId(_assetId); } if (settlementLayer[bridgehubMintData.chainId] == block.chainid) { revert AlreadyCurrentSL(block.chainid); } settlementLayer[bridgehubMintData.chainId] = block.chainid; chainTypeManager[bridgehubMintData.chainId] = ctm; baseTokenAssetId[bridgehubMintData.chainId] = bridgehubMintData.baseTokenAssetId; // To keep `assetIdIsRegistered` consistent, we'll also automatically register the base token. // It is assumed that if the bridging happened, the token was approved on L1 already. assetIdIsRegistered[bridgehubMintData.baseTokenAssetId] = true; address zkChain = getZKChain(bridgehubMintData.chainId); bool contractAlreadyDeployed = zkChain != address(0); if (!contractAlreadyDeployed) { zkChain = IChainTypeManager(ctm).forwardedBridgeMint(bridgehubMintData.chainId, bridgehubMintData.ctmData); if (zkChain == address(0)) { revert ChainIdNotRegistered(bridgehubMintData.chainId); } // We want to allow any chain to be migrated, _registerNewZKChain(bridgehubMintData.chainId, zkChain, false); messageRoot.addNewChain(bridgehubMintData.chainId); } IZKChain(zkChain).forwardedBridgeMint(bridgehubMintData.chainData, contractAlreadyDeployed); emit MigrationFinalized(bridgehubMintData.chainId, _assetId, zkChain); } /// @dev IL1AssetHandler interface, used to undo a failed migration of a chain. // / @param _chainId the chainId of the chain /// @param _assetId the assetId of the chain's CTM /// @param _data the data for the recovery. function bridgeRecoverFailedTransfer( uint256, bytes32 _assetId, address _depositSender, bytes calldata _data ) external payable override requireZeroValue(msg.value) onlyAssetRouter onlyL1 { BridgehubBurnCTMAssetData memory bridgehubBurnData = abi.decode(_data, (BridgehubBurnCTMAssetData)); settlementLayer[bridgehubBurnData.chainId] = block.chainid; IChainTypeManager(chainTypeManager[bridgehubBurnData.chainId]).forwardedBridgeRecoverFailedTransfer({ _chainId: bridgehubBurnData.chainId, _assetInfo: _assetId, _depositSender: _depositSender, _ctmData: bridgehubBurnData.ctmData }); IZKChain(getZKChain(bridgehubBurnData.chainId)).forwardedBridgeRecoverFailedTransfer({ _chainId: bridgehubBurnData.chainId, _assetInfo: _assetId, _originalCaller: _depositSender, _chainData: bridgehubBurnData.chainData }); } /// @dev Registers an already deployed chain with the bridgehub /// @param _chainId The chain Id of the chain /// @param _zkChain Address of the zkChain function registerAlreadyDeployedZKChain(uint256 _chainId, address _zkChain) external onlyOwner onlyL1 { if (_zkChain == address(0)) { revert ZeroAddress(); } if (zkChainMap.contains(_chainId)) { revert ChainIdAlreadyExists(); } if (IZKChain(_zkChain).getChainId() != _chainId) { revert ChainIdMismatch(); } address ctm = IZKChain(_zkChain).getChainTypeManager(); address chainAdmin = IZKChain(_zkChain).getAdmin(); bytes32 chainBaseTokenAssetId = IZKChain(_zkChain).getBaseTokenAssetId(); address bridgeHub = IZKChain(_zkChain).getBridgehub(); if (bridgeHub != address(this)) { revert IncorrectBridgeHubAddress(bridgeHub); } _validateChainParams({_chainId: _chainId, _assetId: chainBaseTokenAssetId, _chainTypeManager: ctm}); chainTypeManager[_chainId] = ctm; baseTokenAssetId[_chainId] = chainBaseTokenAssetId; settlementLayer[_chainId] = block.chainid; _registerNewZKChain(_chainId, _zkChain, true); messageRoot.addNewChain(_chainId); emit NewChain(_chainId, ctm, chainAdmin); } function _validateChainParams(uint256 _chainId, bytes32 _assetId, address _chainTypeManager) internal view { if (_chainId == 0) { revert ZeroChainId(); } if (_chainId > type(uint48).max) { revert ChainIdTooBig(); } if (_chainId == block.chainid) { revert ChainIdCantBeCurrentChain(); } if (_chainTypeManager == address(0)) { revert ZeroAddress(); } if (_assetId == bytes32(0)) { revert EmptyAssetId(); } if (!chainTypeManagerIsRegistered[_chainTypeManager]) { revert CTMNotRegistered(); } if (!assetIdIsRegistered[_assetId]) { revert AssetIdNotSupported(_assetId); } if (assetRouter == address(0)) { revert SharedBridgeNotSet(); } if (chainTypeManager[_chainId] != address(0)) { revert BridgeHubAlreadyRegistered(); } } /*////////////////////////////////////////////////////////////// PAUSE //////////////////////////////////////////////////////////////*/ /// @notice Pauses all functions marked with the `whenNotPaused` modifier. function pause() external onlyOwner { _pause(); } /// @notice Unpauses the contract, allowing all functions marked with the `whenNotPaused` modifier to be called again. function unpause() external onlyOwner { _unpause(); } /// @notice Pauses migration functions. function pauseMigration() external onlyOwner { migrationPaused = true; } /// @notice Unpauses migration functions. function unpauseMigration() external onlyOwner { migrationPaused = false; } /*////////////////////////////////////////////////////////////// Legacy functions //////////////////////////////////////////////////////////////*/ /// @notice return the ZK chain contract for a chainId function getHyperchain(uint256 _chainId) public view returns (address) { return getZKChain(_chainId); } /// @notice return the asset router function sharedBridge() public view returns (address) { return assetRouter; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableMap.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableMap.js. pragma solidity ^0.8.0; import "./EnumerableSet.sol"; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableMap for EnumerableMap.UintToAddressMap; * * // Declare a set state variable * EnumerableMap.UintToAddressMap private myMap; * } * ``` * * The following map types are supported: * * - `uint256 -> address` (`UintToAddressMap`) since v3.0.0 * - `address -> uint256` (`AddressToUintMap`) since v4.6.0 * - `bytes32 -> bytes32` (`Bytes32ToBytes32Map`) since v4.6.0 * - `uint256 -> uint256` (`UintToUintMap`) since v4.7.0 * - `bytes32 -> uint256` (`Bytes32ToUintMap`) since v4.7.0 * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableMap, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableMap. * ==== */ library EnumerableMap { using EnumerableSet for EnumerableSet.Bytes32Set; // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Map type with // bytes32 keys and values. // The Map implementation uses private functions, and user-facing // implementations (such as Uint256ToAddressMap) are just wrappers around // the underlying Map. // This means that we can only create new EnumerableMaps for types that fit // in bytes32. struct Bytes32ToBytes32Map { // Storage of keys EnumerableSet.Bytes32Set _keys; mapping(bytes32 => bytes32) _values; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(Bytes32ToBytes32Map storage map, bytes32 key, bytes32 value) internal returns (bool) { map._values[key] = value; return map._keys.add(key); } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(Bytes32ToBytes32Map storage map, bytes32 key) internal returns (bool) { delete map._values[key]; return map._keys.remove(key); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool) { return map._keys.contains(key); } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function length(Bytes32ToBytes32Map storage map) internal view returns (uint256) { return map._keys.length(); } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32ToBytes32Map storage map, uint256 index) internal view returns (bytes32, bytes32) { bytes32 key = map._keys.at(index); return (key, map._values[key]); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool, bytes32) { bytes32 value = map._values[key]; if (value == bytes32(0)) { return (contains(map, key), bytes32(0)); } else { return (true, value); } } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bytes32) { bytes32 value = map._values[key]; require(value != 0 || contains(map, key), "EnumerableMap: nonexistent key"); return value; } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get( Bytes32ToBytes32Map storage map, bytes32 key, string memory errorMessage ) internal view returns (bytes32) { bytes32 value = map._values[key]; require(value != 0 || contains(map, key), errorMessage); return value; } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(Bytes32ToBytes32Map storage map) internal view returns (bytes32[] memory) { return map._keys.values(); } // UintToUintMap struct UintToUintMap { Bytes32ToBytes32Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(UintToUintMap storage map, uint256 key, uint256 value) internal returns (bool) { return set(map._inner, bytes32(key), bytes32(value)); } /** * @dev Removes a value from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(UintToUintMap storage map, uint256 key) internal returns (bool) { return remove(map._inner, bytes32(key)); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(UintToUintMap storage map, uint256 key) internal view returns (bool) { return contains(map._inner, bytes32(key)); } /** * @dev Returns the number of elements in the map. O(1). */ function length(UintToUintMap storage map) internal view returns (uint256) { return length(map._inner); } /** * @dev Returns the element stored at position `index` in the map. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintToUintMap storage map, uint256 index) internal view returns (uint256, uint256) { (bytes32 key, bytes32 value) = at(map._inner, index); return (uint256(key), uint256(value)); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet(UintToUintMap storage map, uint256 key) internal view returns (bool, uint256) { (bool success, bytes32 value) = tryGet(map._inner, bytes32(key)); return (success, uint256(value)); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(UintToUintMap storage map, uint256 key) internal view returns (uint256) { return uint256(get(map._inner, bytes32(key))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get(UintToUintMap storage map, uint256 key, string memory errorMessage) internal view returns (uint256) { return uint256(get(map._inner, bytes32(key), errorMessage)); } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(UintToUintMap storage map) internal view returns (uint256[] memory) { bytes32[] memory store = keys(map._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintToAddressMap struct UintToAddressMap { Bytes32ToBytes32Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) { return set(map._inner, bytes32(key), bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) { return remove(map._inner, bytes32(key)); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) { return contains(map._inner, bytes32(key)); } /** * @dev Returns the number of elements in the map. O(1). */ function length(UintToAddressMap storage map) internal view returns (uint256) { return length(map._inner); } /** * @dev Returns the element stored at position `index` in the map. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) { (bytes32 key, bytes32 value) = at(map._inner, index); return (uint256(key), address(uint160(uint256(value)))); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) { (bool success, bytes32 value) = tryGet(map._inner, bytes32(key)); return (success, address(uint160(uint256(value)))); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(UintToAddressMap storage map, uint256 key) internal view returns (address) { return address(uint160(uint256(get(map._inner, bytes32(key))))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get( UintToAddressMap storage map, uint256 key, string memory errorMessage ) internal view returns (address) { return address(uint160(uint256(get(map._inner, bytes32(key), errorMessage)))); } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(UintToAddressMap storage map) internal view returns (uint256[] memory) { bytes32[] memory store = keys(map._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressToUintMap struct AddressToUintMap { Bytes32ToBytes32Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(AddressToUintMap storage map, address key, uint256 value) internal returns (bool) { return set(map._inner, bytes32(uint256(uint160(key))), bytes32(value)); } /** * @dev Removes a value from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(AddressToUintMap storage map, address key) internal returns (bool) { return remove(map._inner, bytes32(uint256(uint160(key)))); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(AddressToUintMap storage map, address key) internal view returns (bool) { return contains(map._inner, bytes32(uint256(uint160(key)))); } /** * @dev Returns the number of elements in the map. O(1). */ function length(AddressToUintMap storage map) internal view returns (uint256) { return length(map._inner); } /** * @dev Returns the element stored at position `index` in the map. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressToUintMap storage map, uint256 index) internal view returns (address, uint256) { (bytes32 key, bytes32 value) = at(map._inner, index); return (address(uint160(uint256(key))), uint256(value)); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet(AddressToUintMap storage map, address key) internal view returns (bool, uint256) { (bool success, bytes32 value) = tryGet(map._inner, bytes32(uint256(uint160(key)))); return (success, uint256(value)); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(AddressToUintMap storage map, address key) internal view returns (uint256) { return uint256(get(map._inner, bytes32(uint256(uint160(key))))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get( AddressToUintMap storage map, address key, string memory errorMessage ) internal view returns (uint256) { return uint256(get(map._inner, bytes32(uint256(uint160(key))), errorMessage)); } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(AddressToUintMap storage map) internal view returns (address[] memory) { bytes32[] memory store = keys(map._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // Bytes32ToUintMap struct Bytes32ToUintMap { Bytes32ToBytes32Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(Bytes32ToUintMap storage map, bytes32 key, uint256 value) internal returns (bool) { return set(map._inner, key, bytes32(value)); } /** * @dev Removes a value from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(Bytes32ToUintMap storage map, bytes32 key) internal returns (bool) { return remove(map._inner, key); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool) { return contains(map._inner, key); } /** * @dev Returns the number of elements in the map. O(1). */ function length(Bytes32ToUintMap storage map) internal view returns (uint256) { return length(map._inner); } /** * @dev Returns the element stored at position `index` in the map. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32ToUintMap storage map, uint256 index) internal view returns (bytes32, uint256) { (bytes32 key, bytes32 value) = at(map._inner, index); return (key, uint256(value)); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool, uint256) { (bool success, bytes32 value) = tryGet(map._inner, key); return (success, uint256(value)); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(Bytes32ToUintMap storage map, bytes32 key) internal view returns (uint256) { return uint256(get(map._inner, key)); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get( Bytes32ToUintMap storage map, bytes32 key, string memory errorMessage ) internal view returns (uint256) { return uint256(get(map._inner, key, errorMessage)); } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(Bytes32ToUintMap storage map) internal view returns (bytes32[] memory) { bytes32[] memory store = keys(map._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol) pragma solidity ^0.8.0; import "./OwnableUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); function __Ownable2Step_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable2Step_init_unchained() internal onlyInitializing { } /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner"); _transferOwnership(sender); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {L2Message, L2Log, TxStatus} from "../common/Messaging.sol"; import {IL1AssetHandler} from "../bridge/interfaces/IL1AssetHandler.sol"; import {ICTMDeploymentTracker} from "./ICTMDeploymentTracker.sol"; import {IMessageRoot} from "./IMessageRoot.sol"; import {IAssetHandler} from "../bridge/interfaces/IAssetHandler.sol"; struct L2TransactionRequestDirect { uint256 chainId; uint256 mintValue; address l2Contract; uint256 l2Value; bytes l2Calldata; uint256 l2GasLimit; uint256 l2GasPerPubdataByteLimit; bytes[] factoryDeps; address refundRecipient; } struct L2TransactionRequestTwoBridgesOuter { uint256 chainId; uint256 mintValue; uint256 l2Value; uint256 l2GasLimit; uint256 l2GasPerPubdataByteLimit; address refundRecipient; address secondBridgeAddress; uint256 secondBridgeValue; bytes secondBridgeCalldata; } struct L2TransactionRequestTwoBridgesInner { bytes32 magicValue; address l2Contract; bytes l2Calldata; bytes[] factoryDeps; bytes32 txDataHash; } struct BridgehubMintCTMAssetData { uint256 chainId; bytes32 baseTokenAssetId; bytes ctmData; bytes chainData; } struct BridgehubBurnCTMAssetData { uint256 chainId; bytes ctmData; bytes chainData; } /// @author Matter Labs /// @custom:security-contact [email protected] interface IBridgehub is IAssetHandler, IL1AssetHandler { /// @notice pendingAdmin is changed /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin); /// @notice Admin changed event NewAdmin(address indexed oldAdmin, address indexed newAdmin); /// @notice CTM asset registered event AssetRegistered( bytes32 indexed assetInfo, address indexed _assetAddress, bytes32 indexed additionalData, address sender ); event SettlementLayerRegistered(uint256 indexed chainId, bool indexed isWhitelisted); /// @notice Emitted when the bridging to the chain is started. /// @param chainId Chain ID of the ZK chain /// @param assetId Asset ID of the token for the zkChain's CTM /// @param settlementLayerChainId The chain id of the settlement layer the chain migrates to. event MigrationStarted(uint256 indexed chainId, bytes32 indexed assetId, uint256 indexed settlementLayerChainId); /// @notice Emitted when the bridging to the chain is complete. /// @param chainId Chain ID of the ZK chain /// @param assetId Asset ID of the token for the zkChain's CTM /// @param zkChain The address of the ZK chain on the chain where it is migrated to. event MigrationFinalized(uint256 indexed chainId, bytes32 indexed assetId, address indexed zkChain); /// @notice Starts the transfer of admin rights. Only the current admin or owner can propose a new pending one. /// @notice New admin can accept admin rights by calling `acceptAdmin` function. /// @param _newPendingAdmin Address of the new admin function setPendingAdmin(address _newPendingAdmin) external; /// @notice Accepts transfer of admin rights. Only pending admin can accept the role. function acceptAdmin() external; /// Getters function chainTypeManagerIsRegistered(address _chainTypeManager) external view returns (bool); function chainTypeManager(uint256 _chainId) external view returns (address); function assetIdIsRegistered(bytes32 _baseTokenAssetId) external view returns (bool); function baseToken(uint256 _chainId) external view returns (address); function baseTokenAssetId(uint256 _chainId) external view returns (bytes32); function sharedBridge() external view returns (address); function messageRoot() external view returns (IMessageRoot); function getZKChain(uint256 _chainId) external view returns (address); function getAllZKChains() external view returns (address[] memory); function getAllZKChainChainIDs() external view returns (uint256[] memory); function migrationPaused() external view returns (bool); function admin() external view returns (address); function assetRouter() external view returns (address); /// Mailbox forwarder function proveL2MessageInclusion( uint256 _chainId, uint256 _batchNumber, uint256 _index, L2Message calldata _message, bytes32[] calldata _proof ) external view returns (bool); function proveL2LogInclusion( uint256 _chainId, uint256 _batchNumber, uint256 _index, L2Log memory _log, bytes32[] calldata _proof ) external view returns (bool); function proveL1ToL2TransactionStatus( uint256 _chainId, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof, TxStatus _status ) external view returns (bool); function requestL2TransactionDirect( L2TransactionRequestDirect calldata _request ) external payable returns (bytes32 canonicalTxHash); function requestL2TransactionTwoBridges( L2TransactionRequestTwoBridgesOuter calldata _request ) external payable returns (bytes32 canonicalTxHash); function l2TransactionBaseCost( uint256 _chainId, uint256 _gasPrice, uint256 _l2GasLimit, uint256 _l2GasPerPubdataByteLimit ) external view returns (uint256); //// Registry function createNewChain( uint256 _chainId, address _chainTypeManager, bytes32 _baseTokenAssetId, uint256 _salt, address _admin, bytes calldata _initData, bytes[] calldata _factoryDeps ) external returns (uint256 chainId); function addChainTypeManager(address _chainTypeManager) external; function removeChainTypeManager(address _chainTypeManager) external; function addTokenAssetId(bytes32 _baseTokenAssetId) external; function setAddresses( address _sharedBridge, ICTMDeploymentTracker _l1CtmDeployer, IMessageRoot _messageRoot ) external; event NewChain(uint256 indexed chainId, address chainTypeManager, address indexed chainGovernance); event ChainTypeManagerAdded(address indexed chainTypeManager); event ChainTypeManagerRemoved(address indexed chainTypeManager); event BaseTokenAssetIdRegistered(bytes32 indexed assetId); function whitelistedSettlementLayers(uint256 _chainId) external view returns (bool); function registerSettlementLayer(uint256 _newSettlementLayerChainId, bool _isWhitelisted) external; function settlementLayer(uint256 _chainId) external view returns (uint256); // function finalizeMigrationToGateway( // uint256 _chainId, // address _baseToken, // address _sharedBridge, // address _admin, // uint256 _expectedProtocolVersion, // ZKChainCommitment calldata _commitment, // bytes calldata _diamondCut // ) external; function forwardTransactionOnGateway( uint256 _chainId, bytes32 _canonicalTxHash, uint64 _expirationTimestamp ) external; function ctmAssetIdFromChainId(uint256 _chainId) external view returns (bytes32); function ctmAssetIdFromAddress(address _ctmAddress) external view returns (bytes32); function l1CtmDeployer() external view returns (ICTMDeploymentTracker); function ctmAssetIdToAddress(bytes32 _assetInfo) external view returns (address); function setCTMAssetAddress(bytes32 _additionalData, address _assetAddress) external; function L1_CHAIN_ID() external view returns (uint256); function registerAlreadyDeployedZKChain(uint256 _chainId, address _hyperchain) external; /// @notice return the ZK chain contract for a chainId /// @dev It is a legacy method. Do not use! function getHyperchain(uint256 _chainId) external view returns (address); function registerLegacyChain(uint256 _chainId) external; function pauseMigration() external; function unpauseMigration() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IBridgehub} from "../../bridgehub/IBridgehub.sol"; /// @dev The encoding version used for legacy txs. bytes1 constant LEGACY_ENCODING_VERSION = 0x00; /// @dev The encoding version used for new txs. bytes1 constant NEW_ENCODING_VERSION = 0x01; /// @dev The encoding version used for txs that set the asset handler on the counterpart contract. bytes1 constant SET_ASSET_HANDLER_COUNTERPART_ENCODING_VERSION = 0x02; /// @title L1 Bridge contract interface /// @author Matter Labs /// @custom:security-contact [email protected] interface IAssetRouterBase { event BridgehubDepositBaseTokenInitiated( uint256 indexed chainId, address indexed from, bytes32 assetId, uint256 amount ); event BridgehubDepositInitiated( uint256 indexed chainId, bytes32 indexed txDataHash, address indexed from, bytes32 assetId, bytes bridgeMintCalldata ); event BridgehubWithdrawalInitiated( uint256 chainId, address indexed sender, bytes32 indexed assetId, bytes32 assetDataHash // Todo: What's the point of emitting hash? ); event AssetDeploymentTrackerRegistered( bytes32 indexed assetId, bytes32 indexed additionalData, address assetDeploymentTracker ); event AssetHandlerRegistered(bytes32 indexed assetId, address indexed _assetHandlerAddress); event DepositFinalizedAssetRouter(uint256 indexed chainId, bytes32 indexed assetId, bytes assetData); function BRIDGE_HUB() external view returns (IBridgehub); /// @notice Sets the asset handler address for a specified asset ID on the chain of the asset deployment tracker. /// @dev The caller of this function is encoded within the `assetId`, therefore, it should be invoked by the asset deployment tracker contract. /// @dev No access control on the caller, as msg.sender is encoded in the assetId. /// @dev Typically, for most tokens, ADT is the native token vault. However, custom tokens may have their own specific asset deployment trackers. /// @dev `setAssetHandlerAddressOnCounterpart` should be called on L1 to set asset handlers on L2 chains for a specific asset ID. /// @param _assetRegistrationData The asset data which may include the asset address and any additional required data or encodings. /// @param _assetHandlerAddress The address of the asset handler to be set for the provided asset. function setAssetHandlerAddressThisChain(bytes32 _assetRegistrationData, address _assetHandlerAddress) external; function assetHandlerAddress(bytes32 _assetId) external view returns (address); /// @notice Finalize the withdrawal and release funds. /// @param _chainId The chain ID of the transaction to check. /// @param _assetId The bridged asset ID. /// @param _transferData The position in the L2 logs Merkle tree of the l2Log that was sent with the message. /// @dev We have both the legacy finalizeWithdrawal and the new finalizeDeposit functions, /// finalizeDeposit uses the new format. On the L2 we have finalizeDeposit with new and old formats both. function finalizeDeposit(uint256 _chainId, bytes32 _assetId, bytes memory _transferData) external payable; }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IL1Nullifier} from "../interfaces/IL1Nullifier.sol"; import {INativeTokenVault} from "../ntv/INativeTokenVault.sol"; import {IAssetRouterBase} from "./IAssetRouterBase.sol"; import {L2TransactionRequestTwoBridgesInner} from "../../bridgehub/IBridgehub.sol"; import {IL1SharedBridgeLegacy} from "../interfaces/IL1SharedBridgeLegacy.sol"; import {IL1ERC20Bridge} from "../interfaces/IL1ERC20Bridge.sol"; /// @title L1 Bridge contract interface /// @author Matter Labs /// @custom:security-contact [email protected] interface IL1AssetRouter is IAssetRouterBase, IL1SharedBridgeLegacy { event BridgehubMintData(bytes bridgeMintData); event BridgehubDepositFinalized( uint256 indexed chainId, bytes32 indexed txDataHash, bytes32 indexed l2DepositTxHash ); event ClaimedFailedDepositAssetRouter(uint256 indexed chainId, bytes32 indexed assetId, bytes assetData); event AssetDeploymentTrackerSet( bytes32 indexed assetId, address indexed assetDeploymentTracker, bytes32 indexed additionalData ); event LegacyDepositInitiated( uint256 indexed chainId, bytes32 indexed l2DepositTxHash, address indexed from, address to, address l1Token, uint256 amount ); /// @notice Initiates a deposit by locking funds on the contract and sending the request /// of processing an L2 transaction where tokens would be minted. /// @dev If the token is bridged for the first time, the L2 token contract will be deployed. Note however, that the /// newly-deployed token does not support any custom logic, i.e. rebase tokens' functionality is not supported. /// @param _originalCaller The `msg.sender` address from the external call that initiated current one. /// @param _l2Receiver The account address that should receive funds on L2. /// @param _l1Token The L1 token address which is deposited. /// @param _amount The total amount of tokens to be bridged. /// @param _l2TxGasLimit The L2 gas limit to be used in the corresponding L2 transaction. /// @param _l2TxGasPerPubdataByte The gasPerPubdataByteLimit to be used in the corresponding L2 transaction. /// @param _refundRecipient The address on L2 that will receive the refund for the transaction. /// @dev If the L2 deposit finalization transaction fails, the `_refundRecipient` will receive the `_l2Value`. /// Please note, the contract may change the refund recipient's address to eliminate sending funds to addresses /// out of control. /// - If `_refundRecipient` is a contract on L1, the refund will be sent to the aliased `_refundRecipient`. /// - If `_refundRecipient` is set to `address(0)` and the sender has NO deployed bytecode on L1, the refund will /// be sent to the `msg.sender` address. /// - If `_refundRecipient` is set to `address(0)` and the sender has deployed bytecode on L1, the refund will be /// sent to the aliased `msg.sender` address. /// @dev The address aliasing of L1 contracts as refund recipient on L2 is necessary to guarantee that the funds /// are controllable through the Mailbox, since the Mailbox applies address aliasing to the from address for the /// L2 tx if the L1 msg.sender is a contract. Without address aliasing for L1 contracts as refund recipients they /// would not be able to make proper L2 tx requests through the Mailbox to use or withdraw the funds from L2, and /// the funds would be lost. /// @return txHash The L2 transaction hash of deposit finalization. function depositLegacyErc20Bridge( address _originalCaller, address _l2Receiver, address _l1Token, uint256 _amount, uint256 _l2TxGasLimit, uint256 _l2TxGasPerPubdataByte, address _refundRecipient ) external payable returns (bytes32 txHash); function L1_NULLIFIER() external view returns (IL1Nullifier); function L1_WETH_TOKEN() external view returns (address); function nativeTokenVault() external view returns (INativeTokenVault); function setAssetDeploymentTracker(bytes32 _assetRegistrationData, address _assetDeploymentTracker) external; function setNativeTokenVault(INativeTokenVault _nativeTokenVault) external; function setL1Erc20Bridge(IL1ERC20Bridge _legacyBridge) external; /// @notice Withdraw funds from the initiated deposit, that failed when finalizing on L2. /// @param _chainId The ZK chain id to which the deposit was initiated. /// @param _depositSender The address of the entity that initiated the deposit. /// @param _assetId The unique identifier of the deposited L1 token. /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information. /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system. function bridgeRecoverFailedTransfer( uint256 _chainId, address _depositSender, bytes32 _assetId, bytes calldata _assetData ) external; /// @dev Withdraw funds from the initiated deposit, that failed when finalizing on L2. /// @param _chainId The ZK chain id to which deposit was initiated. /// @param _depositSender The address of the entity that initiated the deposit. /// @param _assetId The unique identifier of the deposited L1 token. /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information. /// @param _l2TxHash The L2 transaction hash of the failed deposit finalization. /// @param _l2BatchNumber The L2 batch number where the deposit finalization was processed. /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message. /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent. /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction with deposit finalization. /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system. function bridgeRecoverFailedTransfer( uint256 _chainId, address _depositSender, bytes32 _assetId, bytes memory _assetData, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof ) external; /// @notice Transfers funds to Native Token Vault, if the asset is registered with it. Does nothing for ETH or non-registered tokens. /// @dev assetId is not the padded address, but the correct encoded id (NTV stores respective format for IDs) /// @param _amount The asset amount to be transferred to native token vault. /// @param _originalCaller The `msg.sender` address from the external call that initiated current one. function transferFundsToNTV(bytes32 _assetId, uint256 _amount, address _originalCaller) external returns (bool); /// @notice Finalize the withdrawal and release funds /// @param _chainId The chain ID of the transaction to check /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent /// @param _message The L2 withdraw data, stored in an L2 -> L1 message /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization function finalizeWithdrawal( uint256 _chainId, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes calldata _message, bytes32[] calldata _merkleProof ) external; /// @notice Initiates a transfer transaction within Bridgehub, used by `requestL2TransactionTwoBridges`. /// @param _chainId The chain ID of the ZK chain to which deposit. /// @param _originalCaller The `msg.sender` address from the external call that initiated current one. /// @param _value The `msg.value` on the target chain tx. /// @param _data The calldata for the second bridge deposit. /// @return request The data used by the bridgehub to create L2 transaction request to specific ZK chain. /// @dev Data has the following abi encoding for legacy deposits: /// address _l1Token, /// uint256 _amount, /// address _l2Receiver /// for new deposits: /// bytes32 _assetId, /// bytes _transferData function bridgehubDeposit( uint256 _chainId, address _originalCaller, uint256 _value, bytes calldata _data ) external payable returns (L2TransactionRequestTwoBridgesInner memory request); /// @notice Generates a calldata for calling the deposit finalization on the L2 native token contract. // / @param _chainId The chain ID of the ZK chain to which deposit. /// @param _sender The address of the deposit initiator. /// @param _assetId The deposited asset ID. /// @param _assetData The encoded data, which is used by the asset handler to determine L2 recipient and amount. Might include extra information. /// @return Returns calldata used on ZK chain. function getDepositCalldata( address _sender, bytes32 _assetId, bytes memory _assetData ) external view returns (bytes memory); /// @notice Allows bridgehub to acquire mintValue for L1->L2 transactions. /// @dev If the corresponding L2 transaction fails, refunds are issued to a refund recipient on L2. /// @param _chainId The chain ID of the ZK chain to which deposit. /// @param _assetId The deposited asset ID. /// @param _originalCaller The `msg.sender` address from the external call that initiated current one. /// @param _amount The total amount of tokens to be bridged. function bridgehubDepositBaseToken( uint256 _chainId, bytes32 _assetId, address _originalCaller, uint256 _amount ) external payable; /// @notice Routes the confirmation to nullifier for backward compatibility. /// @notice Confirms the acceptance of a transaction by the Mailbox, as part of the L2 transaction process within Bridgehub. /// This function is utilized by `requestL2TransactionTwoBridges` to validate the execution of a transaction. /// @param _chainId The chain ID of the ZK chain to which confirm the deposit. /// @param _txDataHash The keccak256 hash of 0x01 || abi.encode(bytes32, bytes) to identify deposits. /// @param _txHash The hash of the L1->L2 transaction to confirm the deposit. function bridgehubConfirmL2Transaction(uint256 _chainId, bytes32 _txDataHash, bytes32 _txHash) external; function isWithdrawalFinalized( uint256 _chainId, uint256 _l2BatchNumber, uint256 _l2MessageIndex ) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; /// @title L1 Base Token Asset Handler contract interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice Used for any asset handler and called by the L1AssetRouter interface IL1BaseTokenAssetHandler { /// @notice Used to get the token address of an assetId function tokenAddress(bytes32 _assetId) external view returns (address); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {Diamond} from "./libraries/Diamond.sol"; import {L2CanonicalTransaction} from "../common/Messaging.sol"; import {FeeParams} from "./chain-deps/ZKChainStorage.sol"; // import {IBridgehub} from "../bridgehub/IBridgehub.sol"; /// @notice Struct that holds all data needed for initializing CTM Proxy. /// @dev We use struct instead of raw parameters in `initialize` function to prevent "Stack too deep" error /// @param owner The address who can manage non-critical updates in the contract /// @param validatorTimelock The address that serves as consensus, i.e. can submit blocks to be processed /// @param chainCreationParams The struct that contains the fields that define how a new chain should be created /// @param protocolVersion The initial protocol version on the newly deployed chain /// @param serverNotifier The address that serves as server notifier // solhint-disable-next-line gas-struct-packing struct ChainTypeManagerInitializeData { address owner; address validatorTimelock; ChainCreationParams chainCreationParams; uint256 protocolVersion; address serverNotifier; } /// @notice The struct that contains the fields that define how a new chain should be created /// within this CTM. /// @param genesisUpgrade The address that is used in the diamond cut initialize address on chain creation /// @param genesisBatchHash Batch hash of the genesis (initial) batch /// @param genesisIndexRepeatedStorageChanges The serial number of the shortcut storage key for the genesis batch /// @param genesisBatchCommitment The zk-proof commitment for the genesis batch /// @param diamondCut The diamond cut for the first upgrade transaction on the newly deployed chain // solhint-disable-next-line gas-struct-packing struct ChainCreationParams { address genesisUpgrade; bytes32 genesisBatchHash; uint64 genesisIndexRepeatedStorageChanges; bytes32 genesisBatchCommitment; Diamond.DiamondCutData diamondCut; bytes forceDeploymentsData; } interface IChainTypeManager { /// @dev Emitted when a new ZKChain is added event NewZKChain(uint256 indexed _chainId, address indexed _zkChainContract); /// @dev emitted when an chain registers and a GenesisUpgrade happens event GenesisUpgrade( address indexed _zkChain, L2CanonicalTransaction _l2Transaction, uint256 indexed _protocolVersion ); /// @notice pendingAdmin is changed /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin); /// @notice Admin changed event NewAdmin(address indexed oldAdmin, address indexed newAdmin); /// @notice ValidatorTimelock changed event NewValidatorTimelock(address indexed oldValidatorTimelock, address indexed newValidatorTimelock); /// @notice ServerNotifier changed event NewServerNotifier(address indexed oldServerNotifier, address indexed newServerNotifier); /// @notice chain creation parameters changed event NewChainCreationParams( address genesisUpgrade, bytes32 genesisBatchHash, uint64 genesisIndexRepeatedStorageChanges, bytes32 genesisBatchCommitment, bytes32 newInitialCutHash, bytes32 forceDeploymentHash ); /// @notice New UpgradeCutHash event NewUpgradeCutHash(uint256 indexed protocolVersion, bytes32 indexed upgradeCutHash); /// @notice New UpgradeCutData event NewUpgradeCutData(uint256 indexed protocolVersion, Diamond.DiamondCutData diamondCutData); /// @notice New ProtocolVersion event NewProtocolVersion(uint256 indexed oldProtocolVersion, uint256 indexed newProtocolVersion); /// @notice Updated ProtocolVersion deadline event UpdateProtocolVersionDeadline(uint256 indexed protocolVersion, uint256 deadline); function BRIDGE_HUB() external view returns (address); function setPendingAdmin(address _newPendingAdmin) external; function acceptAdmin() external; function getZKChain(uint256 _chainId) external view returns (address); function getHyperchain(uint256 _chainId) external view returns (address); function getZKChainLegacy(uint256 _chainId) external view returns (address); function storedBatchZero() external view returns (bytes32); function initialCutHash() external view returns (bytes32); function l1GenesisUpgrade() external view returns (address); function upgradeCutHash(uint256 _protocolVersion) external view returns (bytes32); function protocolVersion() external view returns (uint256); function protocolVersionDeadline(uint256 _protocolVersion) external view returns (uint256); function protocolVersionIsActive(uint256 _protocolVersion) external view returns (bool); function getProtocolVersion(uint256 _chainId) external view returns (uint256); function initialize(ChainTypeManagerInitializeData calldata _initializeData) external; function setValidatorTimelock(address _validatorTimelock) external; function setChainCreationParams(ChainCreationParams calldata _chainCreationParams) external; function getChainAdmin(uint256 _chainId) external view returns (address); function createNewChain( uint256 _chainId, bytes32 _baseTokenAssetId, address _admin, bytes calldata _initData, bytes[] calldata _factoryDeps ) external returns (address); function setNewVersionUpgrade( Diamond.DiamondCutData calldata _cutData, uint256 _oldProtocolVersion, uint256 _oldProtocolVersionDeadline, uint256 _newProtocolVersion ) external; function setUpgradeDiamondCut(Diamond.DiamondCutData calldata _cutData, uint256 _oldProtocolVersion) external; function executeUpgrade(uint256 _chainId, Diamond.DiamondCutData calldata _diamondCut) external; function setPriorityTxMaxGasLimit(uint256 _chainId, uint256 _maxGasLimit) external; function freezeChain(uint256 _chainId) external; function unfreezeChain(uint256 _chainId) external; function setTokenMultiplier(uint256 _chainId, uint128 _nominator, uint128 _denominator) external; function changeFeeParams(uint256 _chainId, FeeParams calldata _newFeeParams) external; function setValidator(uint256 _chainId, address _validator, bool _active) external; function setPorterAvailability(uint256 _chainId, bool _zkPorterIsAvailable) external; function upgradeChainFromVersion( uint256 _chainId, uint256 _oldProtocolVersion, Diamond.DiamondCutData calldata _diamondCut ) external; function getSemverProtocolVersion() external view returns (uint32, uint32, uint32); function forwardedBridgeBurn( uint256 _chainId, bytes calldata _data ) external returns (bytes memory _bridgeMintData); function forwardedBridgeMint(uint256 _chainId, bytes calldata _data) external returns (address); function forwardedBridgeRecoverFailedTransfer( uint256 _chainId, bytes32 _assetInfo, address _depositSender, bytes calldata _ctmData ) external; }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {SlotOccupied, NotInitializedReentrancyGuard, Reentrancy} from "./L1ContractErrors.sol"; /** * @custom:security-contact [email protected] * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. * * _Since v2.5.0:_ this module is now much more gas efficient, given net gas * metering changes introduced in the Istanbul hardfork. */ abstract contract ReentrancyGuard { /// @dev Address of lock flag variable. /// @dev Flag is placed at random memory location to not interfere with Storage contract. // keccak256("ReentrancyGuard") - 1; uint256 private constant LOCK_FLAG_ADDRESS = 0x8e94fed44239eb2314ab7a406345e6c5a8f0ccedf3b600de3d004e672c33abf4; // solhint-disable-next-line max-line-length // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/566a774222707e424896c0c390a84dc3c13bdcb2/contracts/security/ReentrancyGuard.sol // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; modifier reentrancyGuardInitializer() { _initializeReentrancyGuard(); _; } function _initializeReentrancyGuard() private { uint256 lockSlotOldValue; // Storing an initial non-zero value makes deployment a bit more // expensive but in exchange every call to nonReentrant // will be cheaper. assembly { lockSlotOldValue := sload(LOCK_FLAG_ADDRESS) sstore(LOCK_FLAG_ADDRESS, _NOT_ENTERED) } // Check that storage slot for reentrancy guard is empty to rule out possibility of slot conflict if (lockSlotOldValue != 0) { revert SlotOccupied(); } } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { uint256 _status; assembly { _status := sload(LOCK_FLAG_ADDRESS) } if (_status == 0) { revert NotInitializedReentrancyGuard(); } // On the first call to nonReentrant, _NOT_ENTERED will be true if (_status != _NOT_ENTERED) { revert Reentrancy(); } // Any calls to nonReentrant after this point will fail assembly { sstore(LOCK_FLAG_ADDRESS, _ENTERED) } _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) assembly { sstore(LOCK_FLAG_ADDRESS, _NOT_ENTERED) } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {L2_NATIVE_TOKEN_VAULT_ADDR} from "../L2ContractAddresses.sol"; import {LEGACY_ENCODING_VERSION, NEW_ENCODING_VERSION} from "../../bridge/asset-router/IAssetRouterBase.sol"; import {INativeTokenVault} from "../../bridge/ntv/INativeTokenVault.sol"; import {IncorrectTokenAddressFromNTV, UnsupportedEncodingVersion, InvalidNTVBurnData} from "../L1ContractErrors.sol"; /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Helper library for transfer data encoding and decoding to reduce possibility of errors. */ library DataEncoding { /// @notice Abi.encodes the data required for bridgeBurn for NativeTokenVault. /// @param _amount The amount of token to be transferred. /// @param _remoteReceiver The address which to receive tokens on remote chain. /// @param _maybeTokenAddress The helper field that should be either equal to 0 (in this case /// it is assumed that the token has been registered within NativeTokenVault already) or it /// can be equal to the address of the token on the current chain. Providing non-zero address /// allows it to be automatically registered in case it is not yet a part of NativeTokenVault. /// @return The encoded bridgeBurn data function encodeBridgeBurnData( uint256 _amount, address _remoteReceiver, address _maybeTokenAddress ) internal pure returns (bytes memory) { return abi.encode(_amount, _remoteReceiver, _maybeTokenAddress); } /// @notice Function decoding bridgeBurn data previously encoded with this library. /// @param _data The encoded data for bridgeBurn /// @return amount The amount of token to be transferred. /// @return receiver The address which to receive tokens on remote chain. /// @return maybeTokenAddress The helper field that should be either equal to 0 (in this case /// it is assumed that the token has been registered within NativeTokenVault already) or it /// can be equal to the address of the token on the current chain. Providing non-zero address /// allows it to be automatically registered in case it is not yet a part of NativeTokenVault. function decodeBridgeBurnData( bytes memory _data ) internal pure returns (uint256 amount, address receiver, address maybeTokenAddress) { if (_data.length != 96) { // For better error handling revert InvalidNTVBurnData(); } (amount, receiver, maybeTokenAddress) = abi.decode(_data, (uint256, address, address)); } /// @notice Abi.encodes the data required for bridgeMint on remote chain. /// @param _originalCaller The address which initiated the transfer. /// @param _remoteReceiver The address which to receive tokens on remote chain. /// @param _originToken The transferred token address. /// @param _amount The amount of token to be transferred. /// @param _erc20Metadata The transferred token metadata. /// @return The encoded bridgeMint data function encodeBridgeMintData( address _originalCaller, address _remoteReceiver, address _originToken, uint256 _amount, bytes memory _erc20Metadata ) internal pure returns (bytes memory) { // solhint-disable-next-line func-named-parameters return abi.encode(_originalCaller, _remoteReceiver, _originToken, _amount, _erc20Metadata); } /// @notice Function decoding transfer data previously encoded with this library. /// @param _bridgeMintData The encoded bridgeMint data /// @return _originalCaller The address which initiated the transfer. /// @return _remoteReceiver The address which to receive tokens on remote chain. /// @return _parsedOriginToken The transferred token address. /// @return _amount The amount of token to be transferred. /// @return _erc20Metadata The transferred token metadata. function decodeBridgeMintData( bytes memory _bridgeMintData ) internal pure returns ( address _originalCaller, address _remoteReceiver, address _parsedOriginToken, uint256 _amount, bytes memory _erc20Metadata ) { (_originalCaller, _remoteReceiver, _parsedOriginToken, _amount, _erc20Metadata) = abi.decode( _bridgeMintData, (address, address, address, uint256, bytes) ); } /// @notice Encodes the asset data by combining chain id, asset deployment tracker and asset data. /// @param _chainId The id of the chain token is native to. /// @param _assetData The asset data that has to be encoded. /// @param _sender The asset deployment tracker address. /// @return The encoded asset data. function encodeAssetId(uint256 _chainId, bytes32 _assetData, address _sender) internal pure returns (bytes32) { return keccak256(abi.encode(_chainId, _sender, _assetData)); } /// @notice Encodes the asset data by combining chain id, asset deployment tracker and asset data. /// @param _chainId The id of the chain token is native to. /// @param _tokenAddress The address of token that has to be encoded (asset data is the address itself). /// @param _sender The asset deployment tracker address. /// @return The encoded asset data. function encodeAssetId(uint256 _chainId, address _tokenAddress, address _sender) internal pure returns (bytes32) { return keccak256(abi.encode(_chainId, _sender, _tokenAddress)); } /// @notice Encodes the asset data by combining chain id, NTV as asset deployment tracker and asset data. /// @param _chainId The id of the chain token is native to. /// @param _assetData The asset data that has to be encoded. /// @return The encoded asset data. function encodeNTVAssetId(uint256 _chainId, bytes32 _assetData) internal pure returns (bytes32) { return keccak256(abi.encode(_chainId, L2_NATIVE_TOKEN_VAULT_ADDR, _assetData)); } /// @notice Encodes the asset data by combining chain id, NTV as asset deployment tracker and token address. /// @param _chainId The id of the chain token is native to. /// @param _tokenAddress The address of token that has to be encoded (asset data is the address itself). /// @return The encoded asset data. function encodeNTVAssetId(uint256 _chainId, address _tokenAddress) internal pure returns (bytes32) { return keccak256(abi.encode(_chainId, L2_NATIVE_TOKEN_VAULT_ADDR, _tokenAddress)); } /// @dev Encodes the transaction data hash using either the latest encoding standard or the legacy standard. /// @param _encodingVersion EncodingVersion. /// @param _originalCaller The address of the entity that initiated the deposit. /// @param _assetId The unique identifier of the deposited L1 token. /// @param _nativeTokenVault The address of the token, only used if the encoding version is legacy. /// @param _transferData The encoded transfer data, which includes the deposit amount, the address of the L2 receiver, and potentially the token address. /// @return txDataHash The resulting encoded transaction data hash. function encodeTxDataHash( bytes1 _encodingVersion, address _originalCaller, bytes32 _assetId, address _nativeTokenVault, bytes memory _transferData ) internal view returns (bytes32 txDataHash) { if (_encodingVersion == LEGACY_ENCODING_VERSION) { address tokenAddress = INativeTokenVault(_nativeTokenVault).tokenAddress(_assetId); // This is a double check to ensure that the used token for the legacy encoding is correct. // This revert should never be emitted and in real life and should only serve as a guard in // case of inconsistent state of Native Token Vault. bytes32 expectedAssetId = encodeNTVAssetId(block.chainid, tokenAddress); if (_assetId != expectedAssetId) { revert IncorrectTokenAddressFromNTV(_assetId, tokenAddress); } (uint256 depositAmount, , ) = decodeBridgeBurnData(_transferData); txDataHash = keccak256(abi.encode(_originalCaller, tokenAddress, depositAmount)); } else if (_encodingVersion == NEW_ENCODING_VERSION) { // Similarly to calldata, the txDataHash is collision-resistant. // In the legacy data hash, the first encoded variable was the address, which is padded with zeros during `abi.encode`. txDataHash = keccak256( bytes.concat(_encodingVersion, abi.encode(_originalCaller, _assetId, _transferData)) ); } else { revert UnsupportedEncodingVersion(); } } /// @notice Decodes the token data by combining chain id, asset deployment tracker and asset data. function decodeTokenData( bytes calldata _tokenData ) internal pure returns (uint256 chainId, bytes memory name, bytes memory symbol, bytes memory decimals) { bytes1 encodingVersion = _tokenData[0]; if (encodingVersion == LEGACY_ENCODING_VERSION) { (name, symbol, decimals) = abi.decode(_tokenData, (bytes, bytes, bytes)); } else if (encodingVersion == NEW_ENCODING_VERSION) { return abi.decode(_tokenData[1:], (uint256, bytes, bytes, bytes)); } else { revert UnsupportedEncodingVersion(); } } /// @notice Encodes the token data by combining chain id, and its metadata. /// @dev Note that all the metadata of the token is expected to be ABI encoded. /// @param _chainId The id of the chain token is native to. /// @param _name The name of the token. /// @param _symbol The symbol of the token. /// @param _decimals The decimals of the token. /// @return The encoded token data. function encodeTokenData( uint256 _chainId, bytes memory _name, bytes memory _symbol, bytes memory _decimals ) internal pure returns (bytes memory) { return bytes.concat(NEW_ENCODING_VERSION, abi.encode(_chainId, _name, _symbol, _decimals)); } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IAdmin} from "./IAdmin.sol"; import {IExecutor} from "./IExecutor.sol"; import {IGetters} from "./IGetters.sol"; import {IMailbox} from "./IMailbox.sol"; import {Diamond} from "../libraries/Diamond.sol"; interface IZKChain is IAdmin, IExecutor, IGetters, IMailbox { // We need this structure for the server for now event ProposeTransparentUpgrade( Diamond.DiamondCutData diamondCut, uint256 indexed proposalId, bytes32 proposalSalt ); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /// @dev `keccak256("")` bytes32 constant EMPTY_STRING_KECCAK = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; /// @dev Bytes in raw L2 log /// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBatch, address sender, /// bytes32 key, bytes32 value) uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88; /// @dev The maximum length of the bytes array with L2 -> L1 logs uint256 constant MAX_L2_TO_L1_LOGS_COMMITMENT_BYTES = 4 + L2_TO_L1_LOG_SERIALIZE_SIZE * 512; /// @dev The value of default leaf hash for L2 -> L1 logs Merkle tree /// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree /// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))` bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba; bytes32 constant DEFAULT_L2_LOGS_TREE_ROOT_HASH = bytes32(0); /// @dev Denotes the type of the ZKsync transaction that came from L1. uint256 constant PRIORITY_OPERATION_L2_TX_TYPE = 255; /// @dev Denotes the type of the ZKsync transaction that is used for system upgrades. uint256 constant SYSTEM_UPGRADE_L2_TX_TYPE = 254; /// @dev The maximal allowed difference between protocol minor versions in an upgrade. The 100 gap is needed /// in case a protocol version has been tested on testnet, but then not launched on mainnet, e.g. /// due to a bug found. /// We are allowed to jump at most 100 minor versions at a time. The major version is always expected to be 0. uint256 constant MAX_ALLOWED_MINOR_VERSION_DELTA = 100; /// @dev The amount of time in seconds the validator has to process the priority transaction /// NOTE: The constant is set to zero for the Alpha release period uint256 constant PRIORITY_EXPIRATION = 0 days; /// @dev Timestamp - seconds since unix epoch. uint256 constant COMMIT_TIMESTAMP_NOT_OLDER = 3 days; /// @dev Maximum available error between real commit batch timestamp and analog used in the verifier (in seconds) /// @dev Must be used cause miner's `block.timestamp` value can differ on some small value (as we know - 12 seconds) uint256 constant COMMIT_TIMESTAMP_APPROXIMATION_DELTA = 1 hours; /// @dev Shift to apply to verify public input before verifying. uint256 constant PUBLIC_INPUT_SHIFT = 32; /// @dev The maximum number of L2 gas that a user can request for an L2 transaction uint256 constant MAX_GAS_PER_TRANSACTION = 80_000_000; /// @dev Even though the price for 1 byte of pubdata is 16 L1 gas, we have a slightly increased /// value. uint256 constant L1_GAS_PER_PUBDATA_BYTE = 17; /// @dev The intrinsic cost of the L1->l2 transaction in computational L2 gas uint256 constant L1_TX_INTRINSIC_L2_GAS = 167_157; /// @dev The intrinsic cost of the L1->l2 transaction in pubdata uint256 constant L1_TX_INTRINSIC_PUBDATA = 88; /// @dev The minimal base price for L1 transaction uint256 constant L1_TX_MIN_L2_GAS_BASE = 173_484; /// @dev The number of L2 gas the transaction starts costing more with each 544 bytes of encoding uint256 constant L1_TX_DELTA_544_ENCODING_BYTES = 1656; /// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency uint256 constant L1_TX_DELTA_FACTORY_DEPS_L2_GAS = 2473; /// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency uint256 constant L1_TX_DELTA_FACTORY_DEPS_PUBDATA = 64; /// @dev The number of pubdata an L1->L2 transaction requires with each new factory dependency uint256 constant MAX_NEW_FACTORY_DEPS = 64; /// @dev The L2 gasPricePerPubdata required to be used in bridges. uint256 constant REQUIRED_L2_GAS_PRICE_PER_PUBDATA = 800; /// @dev The mask which should be applied to the packed batch and L2 block timestamp in order /// to obtain the L2 block timestamp. Applying this mask is equivalent to calculating modulo 2**128 uint256 constant PACKED_L2_BLOCK_TIMESTAMP_MASK = 0xffffffffffffffffffffffffffffffff; /// @dev Address of the point evaluation precompile used for EIP-4844 blob verification. address constant POINT_EVALUATION_PRECOMPILE_ADDR = address(0x0A); /// @dev The overhead for a transaction slot in L2 gas. /// It is roughly equal to 80kk/MAX_TRANSACTIONS_IN_BATCH, i.e. how many gas would an L1->L2 transaction /// need to pay to compensate for the batch being closed. /// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate /// the operator in case the batch is closed because of tx slots filling up. uint256 constant TX_SLOT_OVERHEAD_L2_GAS = 10000; /// @dev The overhead for each byte of the bootloader memory that the encoding of the transaction. /// It is roughly equal to 80kk/BOOTLOADER_MEMORY_FOR_TXS, i.e. how many gas would an L1->L2 transaction /// need to pay to compensate for the batch being closed. /// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate /// the operator in case the batch is closed because of the memory for transactions being filled up. uint256 constant MEMORY_OVERHEAD_GAS = 10; /// @dev The maximum gas limit for a priority transaction in L2. uint256 constant PRIORITY_TX_MAX_GAS_LIMIT = 72_000_000; /// @dev the address used to identify eth as the base token for chains. address constant ETH_TOKEN_ADDRESS = address(1); /// @dev the value returned in bridgehubDeposit in the TwoBridges function. bytes32 constant TWO_BRIDGES_MAGIC_VALUE = bytes32(uint256(keccak256("TWO_BRIDGES_MAGIC_VALUE")) - 1); /// @dev https://eips.ethereum.org/EIPS/eip-1352 address constant BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS = address(uint160(type(uint16).max)); /// @dev the maximum number of supported chains, this is an arbitrary limit. /// @dev Note, that in case of a malicious Bridgehub admin, the total number of chains /// can be up to 2 times higher. This may be possible, in case the old ChainTypeManager /// had `100` chains and these were migrated to the Bridgehub only after `MAX_NUMBER_OF_ZK_CHAINS` /// were added to the bridgehub via creation of new chains. uint256 constant MAX_NUMBER_OF_ZK_CHAINS = 100; /// @dev Used as the `msg.sender` for transactions that relayed via a settlement layer. address constant SETTLEMENT_LAYER_RELAY_SENDER = address(uint160(0x1111111111111111111111111111111111111111)); /// @dev The metadata version that is supported by the ZK Chains to prove that an L2->L1 log was included in a batch. uint256 constant SUPPORTED_PROOF_METADATA_VERSION = 1; /// @dev The virtual address of the L1 settlement layer. address constant L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS = address( uint160(uint256(keccak256("L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS")) - 1) ); struct PriorityTreeCommitment { uint256 nextLeafIndex; uint256 startIndex; uint256 unprocessedIndex; bytes32[] sides; } // Info that allows to restore a chain. struct ZKChainCommitment { /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch /// (batch 0 is genesis) uint256 totalBatchesExecuted; /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch uint256 totalBatchesVerified; /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed /// batch uint256 totalBatchesCommitted; /// @notice The hash of the L2 system contracts ugpgrade transaction. /// @dev It is non zero if the migration happens while the upgrade is not yet finalized. bytes32 l2SystemContractsUpgradeTxHash; /// @notice The batch when the system contracts upgrade transaction was executed. /// @dev It is non-zero if the migration happens while the batch where the upgrade tx was present /// has not been finalized (executed) yet. uint256 l2SystemContractsUpgradeBatchNumber; /// @notice The hashes of the batches that are needed to keep the blockchain working. /// @dev The length of the array is equal to the `totalBatchesCommitted - totalBatchesExecuted + 1`, i.e. we need /// to store all the unexecuted batches' hashes + 1 latest executed one. bytes32[] batchHashes; /// @notice Commitment to the priority merkle tree. PriorityTreeCommitment priorityTree; /// @notice Whether a chain is a permanent rollup. bool isPermanentRollup; } /// @dev Used as the `msg.sender` for system service transactions. address constant SERVICE_TRANSACTION_SENDER = address(uint160(0xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF));
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /// @dev The enum that represents the transaction execution status /// @param Failure The transaction execution failed /// @param Success The transaction execution succeeded enum TxStatus { Failure, Success } /// @dev The log passed from L2 /// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter /// All other values are not used but are reserved for the future /// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address. /// This field is required formally but does not have any special meaning /// @param txNumberInBatch The L2 transaction number in a Batch, in which the log was sent /// @param sender The L2 address which sent the log /// @param key The 32 bytes of information that was sent in the log /// @param value The 32 bytes of information that was sent in the log // Both `key` and `value` are arbitrary 32-bytes selected by the log sender struct L2Log { uint8 l2ShardId; bool isService; uint16 txNumberInBatch; address sender; bytes32 key; bytes32 value; } /// @dev An arbitrary length message passed from L2 /// @notice Under the hood it is `L2Log` sent from the special system L2 contract /// @param txNumberInBatch The L2 transaction number in a Batch, in which the message was sent /// @param sender The address of the L2 account from which the message was passed /// @param data An arbitrary length message struct L2Message { uint16 txNumberInBatch; address sender; bytes data; } /// @dev Internal structure that contains the parameters for the writePriorityOp /// internal function. /// @param txId The id of the priority transaction. /// @param l2GasPrice The gas price for the l2 priority operation. /// @param expirationTimestamp The timestamp by which the priority operation must be processed by the operator. /// @param request The external calldata request for the priority operation. struct WritePriorityOpParams { uint256 txId; uint256 l2GasPrice; uint64 expirationTimestamp; BridgehubL2TransactionRequest request; } /// @dev Structure that includes all fields of the L2 transaction /// @dev The hash of this structure is the "canonical L2 transaction hash" and can /// be used as a unique identifier of a tx /// @param txType The tx type number, depending on which the L2 transaction can be /// interpreted differently /// @param from The sender's address. `uint256` type for possible address format changes /// and maintaining backward compatibility /// @param to The recipient's address. `uint256` type for possible address format changes /// and maintaining backward compatibility /// @param gasLimit The L2 gas limit for L2 transaction. Analog to the `gasLimit` on an /// L1 transactions /// @param gasPerPubdataByteLimit Maximum number of L2 gas that will cost one byte of pubdata /// (every piece of data that will be stored on L1 as calldata) /// @param maxFeePerGas The absolute maximum sender willing to pay per unit of L2 gas to get /// the transaction included in a Batch. Analog to the EIP-1559 `maxFeePerGas` on an L1 transactions /// @param maxPriorityFeePerGas The additional fee that is paid directly to the validator /// to incentivize them to include the transaction in a Batch. Analog to the EIP-1559 /// `maxPriorityFeePerGas` on an L1 transactions /// @param paymaster The address of the EIP-4337 paymaster, that will pay fees for the /// transaction. `uint256` type for possible address format changes and maintaining backward compatibility /// @param nonce The nonce of the transaction. For L1->L2 transactions it is the priority /// operation Id /// @param value The value to pass with the transaction /// @param reserved The fixed-length fields for usage in a future extension of transaction /// formats /// @param data The calldata that is transmitted for the transaction call /// @param signature An abstract set of bytes that are used for transaction authorization /// @param factoryDeps The set of L2 bytecode hashes whose preimages were shown on L1 /// @param paymasterInput The arbitrary-length data that is used as a calldata to the paymaster pre-call /// @param reservedDynamic The arbitrary-length field for usage in a future extension of transaction formats struct L2CanonicalTransaction { uint256 txType; uint256 from; uint256 to; uint256 gasLimit; uint256 gasPerPubdataByteLimit; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; uint256 paymaster; uint256 nonce; uint256 value; // In the future, we might want to add some // new fields to the struct. The `txData` struct // is to be passed to account and any changes to its structure // would mean a breaking change to these accounts. To prevent this, // we should keep some fields as "reserved" // It is also recommended that their length is fixed, since // it would allow easier proof integration (in case we will need // some special circuit for preprocessing transactions) uint256[4] reserved; bytes data; bytes signature; uint256[] factoryDeps; bytes paymasterInput; // Reserved dynamic type for the future use-case. Using it should be avoided, // But it is still here, just in case we want to enable some additional functionality bytes reservedDynamic; } /// @param sender The sender's address. /// @param contractAddressL2 The address of the contract on L2 to call. /// @param valueToMint The amount of base token that should be minted on L2 as the result of this transaction. /// @param l2Value The msg.value of the L2 transaction. /// @param l2Calldata The calldata for the L2 transaction. /// @param l2GasLimit The limit of the L2 gas for the L2 transaction /// @param l2GasPerPubdataByteLimit The price for a single pubdata byte in L2 gas. /// @param factoryDeps The array of L2 bytecodes that the tx depends on. /// @param refundRecipient The recipient of the refund for the transaction on L2. If the transaction fails, then /// this address will receive the `l2Value`. // solhint-disable-next-line gas-struct-packing struct BridgehubL2TransactionRequest { address sender; address contractL2; uint256 mintValue; uint256 l2Value; bytes l2Calldata; uint256 l2GasLimit; uint256 l2GasPerPubdataByteLimit; bytes[] factoryDeps; address refundRecipient; }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; library AddressAliasHelper { uint160 private constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function converts the address that submitted a tx /// to the inbox on L1 to the msg.sender viewed on L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed on L2 to the /// address that submitted a tx to the inbox on L1 /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } /// @notice Utility function used to calculate the correct refund recipient /// @param _refundRecipient the address that should receive the refund /// @param _originalCaller the address that triggered the tx to L2 /// @return _recipient the corrected address that should receive the refund function actualRefundRecipient( address _refundRecipient, address _originalCaller ) internal view returns (address _recipient) { if (_refundRecipient == address(0)) { // If the `_refundRecipient` is not provided, we use the `_originalCaller` as the recipient. // solhint-disable avoid-tx-origin // slither-disable-next-line tx-origin _recipient = _originalCaller == tx.origin ? _originalCaller : AddressAliasHelper.applyL1ToL2Alias(_originalCaller); // solhint-enable avoid-tx-origin } else if (_refundRecipient.code.length > 0) { // If the `_refundRecipient` is a smart contract, we apply the L1 to L2 alias to prevent foot guns. _recipient = AddressAliasHelper.applyL1ToL2Alias(_refundRecipient); } else { _recipient = _refundRecipient; } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IBridgehub} from "./IBridgehub.sol"; /** * @author Matter Labs * @notice MessageRoot contract is responsible for storing and aggregating the roots of the batches from different chains into the MessageRoot. * @custom:security-contact [email protected] */ interface IMessageRoot { function BRIDGE_HUB() external view returns (IBridgehub); function addNewChain(uint256 _chainId) external; function addChainBatchRoot(uint256 _chainId, uint256 _batchNumber, bytes32 _chainBatchRoot) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {L2TransactionRequestTwoBridgesInner, IBridgehub} from "./IBridgehub.sol"; import {IAssetRouterBase} from "../bridge/asset-router/IAssetRouterBase.sol"; import {IL1AssetDeploymentTracker} from "../bridge/interfaces/IL1AssetDeploymentTracker.sol"; /// @author Matter Labs /// @custom:security-contact [email protected] interface ICTMDeploymentTracker is IL1AssetDeploymentTracker { function bridgehubDeposit( uint256 _chainId, address _originalCaller, uint256 _l2Value, bytes calldata _data ) external payable returns (L2TransactionRequestTwoBridgesInner memory request); function BRIDGE_HUB() external view returns (IBridgehub); function L1_ASSET_ROUTER() external view returns (IAssetRouterBase); function registerCTMAssetOnL1(address _ctmAddress) external; function calculateAssetId(address _l1CTM) external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; // 0xa2ac02a0 error NotRelayedSender(address msgSender, address settlementLayerRelaySender); // 0xf306a770 error NotAssetRouter(address msgSender, address sharedBridge); // 0xff514c10 error ChainIdAlreadyPresent(); // 0x4bd4ae07 error ChainNotPresentInCTM(); // 0xb78dbaa7 error SecondBridgeAddressTooLow(address secondBridgeAddress, address minSecondBridgeAddress); // 0x472477e2 error NotInGatewayMode(); // 0x90c7cbf1 error SLNotWhitelisted(); // 0x48857c1d error IncorrectChainAssetId(bytes32 assetId, bytes32 assetIdFromChainId); // 0xc0ca9182 error NotCurrentSL(uint256 settlementLayerChainId, uint256 blockChainId); // 0xeab895aa error HyperchainNotRegistered(); // 0xf5e39c1f error IncorrectSender(address prevMsgSender, address chainAdmin); // 0x587df426 error AlreadyCurrentSL(uint256 blockChainId); // 0x65e8a019 error ChainExists(); // 0x913183d8 error MessageRootNotRegistered(); // 0x7f4316f3 error NoEthAllowed(); // 0x23295f0e error NotOwner(address sender, address owner); // 0x92626457 error WrongCounterPart(address addressOnCounterPart, address l2BridgehubAddress); // 0xecb34449 error NotL1(uint256 l1ChainId, uint256 blockChainId); // 0x527b87c7 error OnlyBridgehub(address msgSender, address bridgehub); // 0x73fe6c1b error OnlyChain(address msgSender, address zkChainAddress); // 0x693cd3dc error NotOwnerViaRouter(address msgSender, address originalCaller); // 0x5de72107 error ChainNotLegacy();
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; // 0x5ecf2d7a error AccessToFallbackDenied(address target, address invoker); // 0x3995f750 error AccessToFunctionDenied(address target, bytes4 selector, address invoker); // 0x6c167909 error OnlySelfAllowed(); // 0x52e22c98 error RestrictionWasNotPresent(address restriction); // 0xf126e113 error RestrictionWasAlreadyPresent(address restriction); // 0x3331e9c0 error CallNotAllowed(bytes call); // 0xf6fd7071 error RemovingPermanentRestriction(); // 0xfcb9b2e1 error UnallowedImplementation(bytes32 implementationHash); // 0x0dfb42bf error AddressAlreadySet(address addr); // 0x86bb51b8 error AddressHasNoCode(address); // 0x1f73225f error AddressMismatch(address expected, address supplied); // 0x5e85ae73 error AmountMustBeGreaterThanZero(); // 0xfde974f4 error AssetHandlerDoesNotExist(bytes32 assetId); // 0x1294e9e1 error AssetIdMismatch(bytes32 expected, bytes32 supplied); // 0xfe919e28 error AssetIdAlreadyRegistered(); // 0x0bfcef28 error AlreadyWhitelisted(address); // 0x04a0b7e9 error AssetIdNotSupported(bytes32 assetId); // 0x6ef9a972 error BaseTokenGasPriceDenominatorNotSet(); // 0x55ad3fd3 error BatchHashMismatch(bytes32 expected, bytes32 actual); // 0x2078a6a0 error BatchNotExecuted(uint256 batchNumber); // 0xbd4455ff error BatchNumberMismatch(uint256 expectedBatchNumber, uint256 providedBatchNumber); // 0x6cf12312 error BridgeHubAlreadyRegistered(); // 0xdb538614 error BridgeMintNotImplemented(); // 0xe85392f9 error CanOnlyProcessOneBatch(); // 0x00c6ead2 error CantExecuteUnprovenBatches(); // 0xe18cb383 error CantRevertExecutedBatch(); // 0x24591d89 error ChainIdAlreadyExists(); // 0x717a1656 error ChainIdCantBeCurrentChain(); // 0xa179f8c9 error ChainIdMismatch(); // 0x23f3c357 error ChainIdNotRegistered(uint256 chainId); // 0x8f620a06 error ChainIdTooBig(); // 0xf7a01e4d error DelegateCallFailed(bytes returnData); // 0x0a8ed92c error DenominatorIsZero(); // 0xb4f54111 error DeployFailed(); // 0x138ee1a3 error DeployingBridgedTokenForNativeToken(); // 0xc7c9660f error DepositDoesNotExist(); // 0xad2fa98e error DepositExists(); // 0x0e7ee319 error DiamondAlreadyFrozen(); // 0xa7151b9a error DiamondNotFrozen(); // 0x7138356f error EmptyAddress(); // 0x2d4d012f error EmptyAssetId(); // 0x1c25715b error EmptyBytes32(); // 0x95b66fe9 error EmptyDeposit(); // 0x627e0872 error ETHDepositNotSupported(); // 0xac4a3f98 error FacetExists(bytes4 selector, address); // 0xc91cf3b1 error GasPerPubdataMismatch(); // 0x6d4a7df8 error GenesisBatchCommitmentZero(); // 0x7940c83f error GenesisBatchHashZero(); // 0xb4fc6835 error GenesisIndexStorageZero(); // 0x3a1a8589 error GenesisUpgradeZero(); // 0xd356e6ba error HashedLogIsDefault(); // 0x0b08d5be error HashMismatch(bytes32 expected, bytes32 actual); // 0x601b6882 error ZKChainLimitReached(); // 0xdd381a4c error IncorrectBridgeHubAddress(address bridgehub); // 0x826fb11e error InsufficientChainBalance(); // 0xcbd9d2e0 error InvalidCaller(address); // 0x4fbe5dba error InvalidDelay(); // 0xc1780bd6 error InvalidLogSender(address sender, uint256 logKey); // 0xd8e9405c error InvalidNumberOfBlobs(uint256 expected, uint256 numCommitments, uint256 numHashes); // 0x09bde339 error InvalidProof(); // 0x5428eae7 error InvalidProtocolVersion(); // 0x6f1cf752 error InvalidPubdataPricingMode(); // 0x12ba286f error InvalidSelector(bytes4 func); // 0x0214acb6 error InvalidUpgradeTxn(UpgradeTxVerifyParam); // 0xfb5c22e6 error L2TimestampTooBig(); // 0x97e1359e error L2WithdrawalMessageWrongLength(uint256 messageLen); // 0xe37d2c02 error LengthIsNotDivisibleBy32(uint256 length); // 0x1b6825bb error LogAlreadyProcessed(uint8); // 0xcea34703 error MalformedBytecode(BytecodeError); // 0x9bb54c35 error MerkleIndexOutOfBounds(); // 0x8e23ac1a error MerklePathEmpty(); // 0x1c500385 error MerklePathOutOfBounds(); // 0x3312a450 error MigrationPaused(); // 0xfa44b527 error MissingSystemLogs(uint256 expected, uint256 actual); // 0x4a094431 error MsgValueMismatch(uint256 expectedMsgValue, uint256 providedMsgValue); // 0xb385a3da error MsgValueTooLow(uint256 required, uint256 provided); // 0x79cc2d22 error NoCallsProvided(); // 0xa6fef710 error NoFunctionsForDiamondCut(); // 0xcab098d8 error NoFundsTransferred(); // 0xc21b1ab7 error NonEmptyCalldata(); // 0x536ec84b error NonEmptyMsgValue(); // 0xd018e08e error NonIncreasingTimestamp(); // 0x0105f9c0 error NonSequentialBatch(); // 0x0ac76f01 error NonSequentialVersion(); // 0xdd7e3621 error NotInitializedReentrancyGuard(); // 0xdf17e316 error NotWhitelisted(address); // 0xf3ed9dfa error OnlyEraSupported(); // 0x1a21feed error OperationExists(); // 0xeda2fbb1 error OperationMustBePending(); // 0xe1c1ff37 error OperationMustBeReady(); // 0xb926450e error OriginChainIdNotFound(); // 0x9b48e060 error PreviousOperationNotExecuted(); // 0xd5a99014 error PriorityOperationsRollingHashMismatch(); // 0x1a4d284a error PriorityTxPubdataExceedsMaxPubDataPerBatch(); // 0xa461f651 error ProtocolIdMismatch(uint256 expectedProtocolVersion, uint256 providedProtocolId); // 0x64f94ec2 error ProtocolIdNotGreater(); // 0x959f26fb error PubdataGreaterThanLimit(uint256 limit, uint256 length); // 0x63c36549 error QueueIsEmpty(); // 0xab143c06 error Reentrancy(); // 0x667d17de error RemoveFunctionFacetAddressNotZero(address facet); // 0xa2d4b16c error RemoveFunctionFacetAddressZero(); // 0x3580370c error ReplaceFunctionFacetAddressZero(); // 0x9a67c1cb error RevertedBatchNotAfterNewLastBatch(); // 0xd3b6535b error SelectorsMustAllHaveSameFreezability(); // 0xd7a6b5e6 error SharedBridgeValueNotSet(SharedBridgeKey); // 0x856d5b77 error SharedBridgeNotSet(); // 0xdf3a8fdd error SlotOccupied(); // 0xec273439 error CTMAlreadyRegistered(); // 0xc630ef3c error CTMNotRegistered(); // 0xae43b424 error SystemLogsSizeTooBig(); // 0x08753982 error TimeNotReached(uint256 expectedTimestamp, uint256 actualTimestamp); // 0x2d50c33b error TimestampError(); // 0x06439c6b error TokenNotSupported(address token); // 0x23830e28 error TokensWithFeesNotSupported(); // 0x76da24b9 error TooManyFactoryDeps(); // 0xf0b4e88f error TooMuchGas(); // 0x00c5a6a9 error TransactionNotAllowed(); // 0x4c991078 error TxHashMismatch(); // 0x2e311df8 error TxnBodyGasLimitNotEnoughGas(); // 0x8e4a23d6 error Unauthorized(address caller); // 0xe52478c7 error UndefinedDiamondCutAction(); // 0x6aa39880 error UnexpectedSystemLog(uint256 logKey); // 0xf093c2e5 error UpgradeBatchNumberIsNotZero(); // 0x084a1449 error UnsupportedEncodingVersion(); // 0x47b3b145 error ValidateTxnNotEnoughGas(); // 0x626ade30 error ValueMismatch(uint256 expected, uint256 actual); // 0xe1022469 error VerifiedBatchesExceedsCommittedBatches(); // 0xae899454 error WithdrawalAlreadyFinalized(); // 0x750b219c error WithdrawFailed(); // 0x15e8e429 error WrongMagicValue(uint256 expectedMagicValue, uint256 providedMagicValue); // 0xd92e233d error ZeroAddress(); // 0xc84885d4 error ZeroChainId(); // 0x99d8fec9 error EmptyData(); // 0xf3dd1b9c error UnsupportedCommitBatchEncoding(uint8 version); // 0xf338f830 error UnsupportedProofBatchEncoding(uint8 version); // 0x14d2ed8a error UnsupportedExecuteBatchEncoding(uint8 version); // 0xd7d93e1f error IncorrectBatchBounds( uint256 processFromExpected, uint256 processToExpected, uint256 processFromProvided, uint256 processToProvided ); // 0x64107968 error AssetHandlerNotRegistered(bytes32 assetId); // 0x64846fe4 error NotARestriction(address addr); // 0xfa5cd00f error NotAllowed(address addr); // 0xccdd18d2 error BytecodeAlreadyPublished(bytes32 bytecodeHash); // 0x25d8333c error CallerNotTimerAdmin(); // 0x907f8e51 error DeadlineNotYetPassed(); // 0x6eef58d1 error NewDeadlineNotGreaterThanCurrent(); // 0x8b7e144a error NewDeadlineExceedsMaxDeadline(); // 0x2a5989a0 error AlreadyPermanentRollup(); // 0x92daded2 error InvalidDAForPermanentRollup(); // 0x7a4902ad error TimerAlreadyStarted(); // 0x09aa9830 error MerklePathLengthMismatch(uint256 pathLength, uint256 expectedLength); // 0xc33e6128 error MerkleNothingToProve(); // 0xafbb7a4e error MerkleIndexOrHeightMismatch(); // 0x1b582fcf error MerkleWrongIndex(uint256 index, uint256 maxNodeNumber); // 0x485cfcaa error MerkleWrongLength(uint256 newLeavesLength, uint256 leafNumber); // 0xce63ce17 error NoCTMForAssetId(bytes32 assetId); // 0x02181a13 error SettlementLayersMustSettleOnL1(); // 0x1850b46b error TokenNotLegacy(); // 0x1929b7de error IncorrectTokenAddressFromNTV(bytes32 assetId, address tokenAddress); // 0x48c5fa28 error InvalidProofLengthForFinalNode(); // 0xfade089a error LegacyEncodingUsedForNonL1Token(); // 0xa51fa558 error TokenIsLegacy(); // 0x29963361 error LegacyBridgeUsesNonNativeToken(); // 0x11832de8 error AssetRouterAllowanceNotZero(); // 0xaa5f6180 error BurningNativeWETHNotSupported(); // 0xb20b58ce error NoLegacySharedBridge(); // 0x8e3ce3cb error TooHighDeploymentNonce(); // 0x78d2ed02 error ChainAlreadyLive(); // 0x4e98b356 error MigrationsNotPaused(); // 0xf20c5c2a error WrappedBaseTokenAlreadyRegistered(); // 0xde4c0b96 error InvalidNTVBurnData(); // 0xbe7193d4 error InvalidSystemLogsLength(); // 0x8efef97a error LegacyBridgeNotSet(); // 0x767eed08 error LegacyMethodForNonL1Token(); // 0xc352bb73 error UnknownVerifierType(); // 0x456f8f7a error EmptyProofLength(); enum SharedBridgeKey { PostUpgradeFirstBatch, LegacyBridgeFirstBatch, LegacyBridgeLastDepositBatch, LegacyBridgeLastDepositTxn } enum BytecodeError { Version, NumberOfWords, Length, WordsMustBeOdd } enum UpgradeTxVerifyParam { From, To, Paymaster, Value, MaxFeePerGas, MaxPriorityFeePerGas, Reserved0, Reserved1, Reserved2, Reserved3, Signature, PaymasterInput, ReservedDynamic }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {NonEmptyMsgValue} from "../../common/L1ContractErrors.sol"; abstract contract AssetHandlerModifiers { /// @notice Modifier that ensures that a certain value is zero. /// @dev This should be used in bridgeBurn-like functions to ensure that users /// do not accidentally provide value there. modifier requireZeroValue(uint256 _value) { if (_value != 0) { revert NonEmptyMsgValue(); } _; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol) pragma solidity ^0.8.0; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; /// @title L1 Asset Handler contract interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice Used for any asset handler and called by the L1AssetRouter interface IL1AssetHandler { /// @param _chainId the chainId that the message will be sent to /// @param _assetId the assetId of the asset being bridged /// @param _depositSender the address of the entity that initiated the deposit. /// @param _data the actual data specified for the function function bridgeRecoverFailedTransfer( uint256 _chainId, bytes32 _assetId, address _depositSender, bytes calldata _data ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; /// @title Asset Handler contract interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice Used for any asset handler and called by the AssetRouter interface IAssetHandler { /// @dev Emitted when a token is minted event BridgeMint(uint256 indexed chainId, bytes32 indexed assetId, address receiver, uint256 amount); /// @dev Emitted when a token is burned event BridgeBurn( uint256 indexed chainId, bytes32 indexed assetId, address indexed sender, address receiver, uint256 amount ); /// @param _chainId the chainId that the message is from /// @param _assetId the assetId of the asset being bridged /// @param _data the actual data specified for the function /// @dev Note, that while payable, this function will only receive base token on L2 chains, /// while L1 the provided msg.value is always 0. However, this may change in the future, /// so if your AssetHandler implementation relies on it, it is better to explicitly check it. function bridgeMint(uint256 _chainId, bytes32 _assetId, bytes calldata _data) external payable; /// @notice Burns bridged tokens and returns the calldata for L2 <-> L1 message. /// @dev In case of native token vault _data is the tuple of _depositAmount and _l2Receiver. /// @param _chainId the chainId that the message will be sent to /// @param _msgValue the msg.value of the L2 transaction. For now it is always 0. /// @param _assetId the assetId of the asset being bridged /// @param _originalCaller the original caller of the /// @param _data the actual data specified for the function /// @return _bridgeMintData The calldata used by counterpart asset handler to unlock tokens for recipient. function bridgeBurn( uint256 _chainId, uint256 _msgValue, bytes32 _assetId, address _originalCaller, bytes calldata _data ) external payable returns (bytes memory _bridgeMintData); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IBridgehub} from "../../bridgehub/IBridgehub.sol"; import {IL1NativeTokenVault} from "../ntv/IL1NativeTokenVault.sol"; import {IL1ERC20Bridge} from "./IL1ERC20Bridge.sol"; /// @param chainId The chain ID of the transaction to check. /// @param l2BatchNumber The L2 batch number where the withdrawal was processed. /// @param l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message. /// @param l2sender The address of the message sender on L2 (base token system contract address or asset handler) /// @param l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent. /// @param message The L2 withdraw data, stored in an L2 -> L1 message. /// @param merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization. struct FinalizeL1DepositParams { uint256 chainId; uint256 l2BatchNumber; uint256 l2MessageIndex; address l2Sender; uint16 l2TxNumberInBatch; bytes message; bytes32[] merkleProof; } /// @title L1 Bridge contract interface /// @author Matter Labs /// @custom:security-contact [email protected] interface IL1Nullifier { event BridgehubDepositFinalized( uint256 indexed chainId, bytes32 indexed txDataHash, bytes32 indexed l2DepositTxHash ); function isWithdrawalFinalized( uint256 _chainId, uint256 _l2BatchNumber, uint256 _l2MessageIndex ) external view returns (bool); function claimFailedDepositLegacyErc20Bridge( address _depositSender, address _l1Token, uint256 _amount, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof ) external; function claimFailedDeposit( uint256 _chainId, address _depositSender, address _l1Token, uint256 _amount, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof ) external; function finalizeDeposit(FinalizeL1DepositParams calldata _finalizeWithdrawalParams) external; function BRIDGE_HUB() external view returns (IBridgehub); function legacyBridge() external view returns (IL1ERC20Bridge); function depositHappened(uint256 _chainId, bytes32 _l2TxHash) external view returns (bytes32); function bridgehubConfirmL2TransactionForwarded(uint256 _chainId, bytes32 _txDataHash, bytes32 _txHash) external; function l1NativeTokenVault() external view returns (IL1NativeTokenVault); function setL1NativeTokenVault(IL1NativeTokenVault _nativeTokenVault) external; function setL1AssetRouter(address _l1AssetRouter) external; function chainBalance(uint256 _chainId, address _token) external view returns (uint256); function l2BridgeAddress(uint256 _chainId) external view returns (address); function transferTokenToNTV(address _token) external; function nullifyChainBalanceByNTV(uint256 _chainId, address _token) external; /// @dev Withdraw funds from the initiated deposit, that failed when finalizing on L2. /// @param _chainId The ZK chain id to which deposit was initiated. /// @param _depositSender The address of the entity that initiated the deposit. /// @param _assetId The unique identifier of the deposited L1 token. /// @param _assetData The encoded transfer data, which includes both the deposit amount and the address of the L2 receiver. Might include extra information. /// @param _l2TxHash The L2 transaction hash of the failed deposit finalization. /// @param _l2BatchNumber The L2 batch number where the deposit finalization was processed. /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message. /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent. /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction with deposit finalization. /// @dev Processes claims of failed deposit, whether they originated from the legacy bridge or the current system. function bridgeRecoverFailedTransfer( uint256 _chainId, address _depositSender, bytes32 _assetId, bytes memory _assetData, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof ) external; /// @notice Legacy function to finalize withdrawal via the same /// interface as the old L1SharedBridge. /// @dev Note, that we need to keep this interface, since the `L2AssetRouter` /// will continue returning the previous address as the `l1SharedBridge`. The value /// returned by it is used in the SDK for finalizing withdrawals. /// @param _chainId The chain ID of the transaction to check /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent /// @param _message The L2 withdraw data, stored in an L2 -> L1 message /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization function finalizeWithdrawal( uint256 _chainId, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes calldata _message, bytes32[] calldata _merkleProof ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IAssetRouterBase} from "../asset-router/IAssetRouterBase.sol"; /// @title Base Native token vault contract interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice The NTV is an Asset Handler for the L1AssetRouter to handle native tokens interface INativeTokenVault { event BridgedTokenBeaconUpdated(address bridgedTokenBeacon, bytes32 bridgedTokenProxyBytecodeHash); /// @notice The Weth token address function WETH_TOKEN() external view returns (address); /// @notice The AssetRouter contract function ASSET_ROUTER() external view returns (IAssetRouterBase); /// @notice The chain ID of the L1 chain function L1_CHAIN_ID() external view returns (uint256); /// @notice Returns the chain ID of the origin chain for a given asset ID function originChainId(bytes32 assetId) external view returns (uint256); /// @notice Registers tokens within the NTV. /// @dev The goal is to allow bridging native tokens automatically, by registering them on the fly. /// @notice Allows the bridge to register a token address for the vault. /// @notice No access control is ok, since the bridging of tokens should be permissionless. This requires permissionless registration. function registerToken(address _l1Token) external; /// @notice Ensures that the native token is registered with the NTV. /// @dev This function is used to ensure that the token is registered with the NTV. function ensureTokenIsRegistered(address _nativeToken) external returns (bytes32); /// @notice Used to get the the ERC20 data for a token function getERC20Getters(address _token, uint256 _originChainId) external view returns (bytes memory); /// @notice Used to get the token address of an assetId function tokenAddress(bytes32 assetId) external view returns (address); /// @notice Used to get the assetId of a token function assetId(address token) external view returns (bytes32); /// @notice Used to get the expected bridged token address corresponding to its native counterpart function calculateCreate2TokenAddress(uint256 _originChainId, address _originToken) external view returns (address); /// @notice Tries to register a token from the provided `_burnData` and reverts if it is not possible. function tryRegisterTokenFromBurnData(bytes calldata _burnData, bytes32 _expectedAssetId) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; /// @title L1 Bridge contract interface /// @author Matter Labs /// @custom:security-contact [email protected] interface IL1SharedBridgeLegacy { function l2BridgeAddress(uint256 _chainId) external view returns (address); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IL1Nullifier} from "./IL1Nullifier.sol"; import {IL1NativeTokenVault} from "../ntv/IL1NativeTokenVault.sol"; import {IL1AssetRouter} from "../asset-router/IL1AssetRouter.sol"; /// @title L1 Bridge contract legacy interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice Legacy Bridge interface before ZK chain migration, used for backward compatibility with ZKsync Era interface IL1ERC20Bridge { event DepositInitiated( bytes32 indexed l2DepositTxHash, address indexed from, address indexed to, address l1Token, uint256 amount ); event WithdrawalFinalized(address indexed to, address indexed l1Token, uint256 amount); event ClaimedFailedDeposit(address indexed to, address indexed l1Token, uint256 amount); function isWithdrawalFinalized(uint256 _l2BatchNumber, uint256 _l2MessageIndex) external view returns (bool); function deposit( address _l2Receiver, address _l1Token, uint256 _amount, uint256 _l2TxGasLimit, uint256 _l2TxGasPerPubdataByte, address _refundRecipient ) external payable returns (bytes32 txHash); function deposit( address _l2Receiver, address _l1Token, uint256 _amount, uint256 _l2TxGasLimit, uint256 _l2TxGasPerPubdataByte ) external payable returns (bytes32 txHash); function claimFailedDeposit( address _depositSender, address _l1Token, bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof ) external; function finalizeWithdrawal( uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes calldata _message, bytes32[] calldata _merkleProof ) external; function l2TokenAddress(address _l1Token) external view returns (address); function L1_NULLIFIER() external view returns (IL1Nullifier); function L1_ASSET_ROUTER() external view returns (IL1AssetRouter); function L1_NATIVE_TOKEN_VAULT() external view returns (IL1NativeTokenVault); function l2TokenBeacon() external view returns (address); function l2Bridge() external view returns (address); function depositAmount( address _account, address _l1Token, bytes32 _depositL2TxHash ) external view returns (uint256 amount); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {SafeCast} from "@openzeppelin/contracts-v4/utils/math/SafeCast.sol"; import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol"; import {NoFunctionsForDiamondCut, UndefinedDiamondCutAction, AddressHasNoCode, FacetExists, RemoveFunctionFacetAddressZero, SelectorsMustAllHaveSameFreezability, NonEmptyCalldata, ReplaceFunctionFacetAddressZero, RemoveFunctionFacetAddressNotZero, DelegateCallFailed} from "../../common/L1ContractErrors.sol"; /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice The helper library for managing the EIP-2535 diamond proxy. library Diamond { using UncheckedMath for uint256; using SafeCast for uint256; /// @dev Magic value that should be returned by diamond cut initialize contracts. /// @dev Used to distinguish calls to contracts that were supposed to be used as diamond initializer from other contracts. bytes32 internal constant DIAMOND_INIT_SUCCESS_RETURN_VALUE = 0x33774e659306e47509050e97cb651e731180a42d458212294d30751925c551a2; // keccak256("diamond.zksync.init") - 1 /// @dev Storage position of `DiamondStorage` structure. bytes32 private constant DIAMOND_STORAGE_POSITION = 0xc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131b; // keccak256("diamond.standard.diamond.storage") - 1; event DiamondCut(FacetCut[] facetCuts, address initAddress, bytes initCalldata); /// @dev Utility struct that contains associated facet & meta information of selector /// @param facetAddress address of the facet which is connected with selector /// @param selectorPosition index in `FacetToSelectors.selectors` array, where is selector stored /// @param isFreezable denotes whether the selector can be frozen. struct SelectorToFacet { address facetAddress; uint16 selectorPosition; bool isFreezable; } /// @dev Utility struct that contains associated selectors & meta information of facet /// @param selectors list of all selectors that belong to the facet /// @param facetPosition index in `DiamondStorage.facets` array, where is facet stored struct FacetToSelectors { bytes4[] selectors; uint16 facetPosition; } /// @notice The structure that holds all diamond proxy associated parameters /// @dev According to the EIP-2535 should be stored on a special storage key - `DIAMOND_STORAGE_POSITION` /// @param selectorToFacet A mapping from the selector to the facet address and its meta information /// @param facetToSelectors A mapping from facet address to its selectors with meta information /// @param facets The array of all unique facet addresses that belong to the diamond proxy /// @param isFrozen Denotes whether the diamond proxy is frozen and all freezable facets are not accessible struct DiamondStorage { mapping(bytes4 selector => SelectorToFacet selectorInfo) selectorToFacet; mapping(address facetAddress => FacetToSelectors facetInfo) facetToSelectors; address[] facets; bool isFrozen; } /// @dev Parameters for diamond changes that touch one of the facets /// @param facet The address of facet that's affected by the cut /// @param action The action that is made on the facet /// @param isFreezable Denotes whether the facet & all their selectors can be frozen /// @param selectors An array of unique selectors that belongs to the facet address // solhint-disable-next-line gas-struct-packing struct FacetCut { address facet; Action action; bool isFreezable; bytes4[] selectors; } /// @dev Structure of the diamond proxy changes /// @param facetCuts The set of changes (adding/removing/replacement) of implementation contracts /// @param initAddress The address that's delegate called after setting up new facet changes /// @param initCalldata Calldata for the delegate call to `initAddress` struct DiamondCutData { FacetCut[] facetCuts; address initAddress; bytes initCalldata; } /// @dev Type of change over diamond: add/replace/remove facets enum Action { Add, Replace, Remove } /// @return diamondStorage The pointer to the storage where all specific diamond proxy parameters stored function getDiamondStorage() internal pure returns (DiamondStorage storage diamondStorage) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { diamondStorage.slot := position } } /// @dev Add/replace/remove any number of selectors and optionally execute a function with delegatecall /// @param _diamondCut Diamond's facet changes and the parameters to optional initialization delegatecall function diamondCut(DiamondCutData memory _diamondCut) internal { FacetCut[] memory facetCuts = _diamondCut.facetCuts; address initAddress = _diamondCut.initAddress; bytes memory initCalldata = _diamondCut.initCalldata; uint256 facetCutsLength = facetCuts.length; for (uint256 i = 0; i < facetCutsLength; i = i.uncheckedInc()) { Action action = facetCuts[i].action; address facet = facetCuts[i].facet; bool isFacetFreezable = facetCuts[i].isFreezable; bytes4[] memory selectors = facetCuts[i].selectors; if (selectors.length == 0) { revert NoFunctionsForDiamondCut(); } if (action == Action.Add) { _addFunctions(facet, selectors, isFacetFreezable); } else if (action == Action.Replace) { _replaceFunctions(facet, selectors, isFacetFreezable); } else if (action == Action.Remove) { _removeFunctions(facet, selectors); } else { revert UndefinedDiamondCutAction(); } } _initializeDiamondCut(initAddress, initCalldata); emit DiamondCut(facetCuts, initAddress, initCalldata); } /// @dev Add new functions to the diamond proxy /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array function _addFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private { DiamondStorage storage ds = getDiamondStorage(); // Facet with no code cannot be added. // This check also verifies that the facet does not have zero address, since it is the // address with which 0x00000000 selector is associated. if (_facet.code.length == 0) { revert AddressHasNoCode(_facet); } // Add facet to the list of facets if the facet address is new one _saveFacetIfNew(_facet); uint256 selectorsLength = _selectors.length; for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) { bytes4 selector = _selectors[i]; SelectorToFacet memory oldFacet = ds.selectorToFacet[selector]; if (oldFacet.facetAddress != address(0)) { revert FacetExists(selector, oldFacet.facetAddress); } _addOneFunction(_facet, selector, _isFacetFreezable); } } /// @dev Change associated facets to already known function selectors /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array function _replaceFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private { DiamondStorage storage ds = getDiamondStorage(); // Facet with no code cannot be added. // This check also verifies that the facet does not have zero address, since it is the // address with which 0x00000000 selector is associated. if (_facet.code.length == 0) { revert AddressHasNoCode(_facet); } uint256 selectorsLength = _selectors.length; for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) { bytes4 selector = _selectors[i]; SelectorToFacet memory oldFacet = ds.selectorToFacet[selector]; // it is impossible to replace the facet with zero address if (oldFacet.facetAddress == address(0)) { revert ReplaceFunctionFacetAddressZero(); } _removeOneFunction(oldFacet.facetAddress, selector); // Add facet to the list of facets if the facet address is a new one _saveFacetIfNew(_facet); _addOneFunction(_facet, selector, _isFacetFreezable); } } /// @dev Remove association with function and facet /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array function _removeFunctions(address _facet, bytes4[] memory _selectors) private { DiamondStorage storage ds = getDiamondStorage(); // facet address must be zero if (_facet != address(0)) { revert RemoveFunctionFacetAddressNotZero(_facet); } uint256 selectorsLength = _selectors.length; for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) { bytes4 selector = _selectors[i]; SelectorToFacet memory oldFacet = ds.selectorToFacet[selector]; // Can't delete a non-existent facet if (oldFacet.facetAddress == address(0)) { revert RemoveFunctionFacetAddressZero(); } _removeOneFunction(oldFacet.facetAddress, selector); } } /// @dev Add address to the list of known facets if it is not on the list yet /// NOTE: should be called ONLY before adding a new selector associated with the address function _saveFacetIfNew(address _facet) private { DiamondStorage storage ds = getDiamondStorage(); uint256 selectorsLength = ds.facetToSelectors[_facet].selectors.length; // If there are no selectors associated with facet then save facet as new one if (selectorsLength == 0) { ds.facetToSelectors[_facet].facetPosition = ds.facets.length.toUint16(); ds.facets.push(_facet); } } /// @dev Add one function to the already known facet /// NOTE: It is expected but NOT enforced that: /// - `_facet` is NON-ZERO address /// - `_facet` is already stored address in `DiamondStorage.facets` /// - `_selector` is NOT associated by another facet function _addOneFunction(address _facet, bytes4 _selector, bool _isSelectorFreezable) private { DiamondStorage storage ds = getDiamondStorage(); uint16 selectorPosition = (ds.facetToSelectors[_facet].selectors.length).toUint16(); // if selectorPosition is nonzero, it means it is not a new facet // so the freezability of the first selector must be matched to _isSelectorFreezable // so all the selectors in a facet will have the same freezability if (selectorPosition != 0) { bytes4 selector0 = ds.facetToSelectors[_facet].selectors[0]; if (_isSelectorFreezable != ds.selectorToFacet[selector0].isFreezable) { revert SelectorsMustAllHaveSameFreezability(); } } ds.selectorToFacet[_selector] = SelectorToFacet({ facetAddress: _facet, selectorPosition: selectorPosition, isFreezable: _isSelectorFreezable }); ds.facetToSelectors[_facet].selectors.push(_selector); } /// @dev Remove one associated function with facet /// NOTE: It is expected but NOT enforced that `_facet` is NON-ZERO address function _removeOneFunction(address _facet, bytes4 _selector) private { DiamondStorage storage ds = getDiamondStorage(); // Get index of `FacetToSelectors.selectors` of the selector and last element of array uint256 selectorPosition = ds.selectorToFacet[_selector].selectorPosition; uint256 lastSelectorPosition = ds.facetToSelectors[_facet].selectors.length - 1; // If the selector is not at the end of the array then move the last element to the selector position if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetToSelectors[_facet].selectors[lastSelectorPosition]; ds.facetToSelectors[_facet].selectors[selectorPosition] = lastSelector; ds.selectorToFacet[lastSelector].selectorPosition = selectorPosition.toUint16(); } // Remove last element from the selectors array ds.facetToSelectors[_facet].selectors.pop(); // Finally, clean up the association with facet delete ds.selectorToFacet[_selector]; // If there are no selectors for facet then remove the facet from the list of known facets if (lastSelectorPosition == 0) { _removeFacet(_facet); } } /// @dev remove facet from the list of known facets /// NOTE: It is expected but NOT enforced that there are no selectors associated with `_facet` function _removeFacet(address _facet) private { DiamondStorage storage ds = getDiamondStorage(); // Get index of `DiamondStorage.facets` of the facet and last element of array uint256 facetPosition = ds.facetToSelectors[_facet].facetPosition; uint256 lastFacetPosition = ds.facets.length - 1; // If the facet is not at the end of the array then move the last element to the facet position if (facetPosition != lastFacetPosition) { address lastFacet = ds.facets[lastFacetPosition]; ds.facets[facetPosition] = lastFacet; ds.facetToSelectors[lastFacet].facetPosition = facetPosition.toUint16(); } // Remove last element from the facets array ds.facets.pop(); } /// @dev Delegates call to the initialization address with provided calldata /// @dev Used as a final step of diamond cut to execute the logic of the initialization for changed facets function _initializeDiamondCut(address _init, bytes memory _calldata) private { if (_init == address(0)) { // Non-empty calldata for zero address if (_calldata.length != 0) { revert NonEmptyCalldata(); } } else { // Do not check whether `_init` is a contract since later we check that it returns data. (bool success, bytes memory data) = _init.delegatecall(_calldata); if (!success) { // If the returndata is too small, we still want to produce some meaningful error if (data.length < 4) { revert DelegateCallFailed(data); } assembly { revert(add(data, 0x20), mload(data)) } } // Check that called contract returns magic value to make sure that contract logic // supposed to be used as diamond cut initializer. if (data.length != 32) { revert DelegateCallFailed(data); } if (abi.decode(data, (bytes32)) != DIAMOND_INIT_SUCCESS_RETURN_VALUE) { revert DelegateCallFailed(data); } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IVerifier, VerifierParams} from "../chain-interfaces/IVerifier.sol"; // import {IChainTypeManager} from "../IChainTypeManager.sol"; import {PriorityQueue} from "../../state-transition/libraries/PriorityQueue.sol"; import {PriorityTree} from "../../state-transition/libraries/PriorityTree.sol"; /// @notice Indicates whether an upgrade is initiated and if yes what type /// @param None Upgrade is NOT initiated /// @param Transparent Fully transparent upgrade is initiated, upgrade data is publicly known /// @param Shadow Shadow upgrade is initiated, upgrade data is hidden enum UpgradeState { None, Transparent, Shadow } /// @dev Logically separated part of the storage structure, which is responsible for everything related to proxy /// upgrades and diamond cuts /// @param proposedUpgradeHash The hash of the current upgrade proposal, zero if there is no active proposal /// @param state Indicates whether an upgrade is initiated and if yes what type /// @param securityCouncil Address which has the permission to approve instant upgrades (expected to be a Gnosis /// multisig) /// @param approvedBySecurityCouncil Indicates whether the security council has approved the upgrade /// @param proposedUpgradeTimestamp The timestamp when the upgrade was proposed, zero if there are no active proposals /// @param currentProposalId The serial number of proposed upgrades, increments when proposing a new one struct UpgradeStorage { bytes32 proposedUpgradeHash; UpgradeState state; address securityCouncil; bool approvedBySecurityCouncil; uint40 proposedUpgradeTimestamp; uint40 currentProposalId; } /// @notice The struct that describes whether users will be charged for pubdata for L1->L2 transactions. /// @param Rollup The users are charged for pubdata & it is priced based on the gas price on Ethereum. /// @param Validium The pubdata is considered free with regard to the L1 gas price. enum PubdataPricingMode { Rollup, Validium } /// @notice The fee params for L1->L2 transactions for the network. /// @param pubdataPricingMode How the users will charged for pubdata in L1->L2 transactions. /// @param batchOverheadL1Gas The amount of L1 gas required to process the batch (except for the calldata). /// @param maxPubdataPerBatch The maximal number of pubdata that can be emitted per batch. /// @param priorityTxMaxPubdata The maximal amount of pubdata a priority transaction is allowed to publish. /// It can be slightly less than maxPubdataPerBatch in order to have some margin for the bootloader execution. /// @param minimalL2GasPrice The minimal L2 gas price to be used by L1->L2 transactions. It should represent /// the price that a single unit of compute costs. struct FeeParams { PubdataPricingMode pubdataPricingMode; uint32 batchOverheadL1Gas; uint32 maxPubdataPerBatch; uint32 maxL2GasPerBatch; uint32 priorityTxMaxPubdata; uint64 minimalL2GasPrice; } /// @dev storing all storage variables for ZK chain diamond facets /// NOTE: It is used in a proxy, so it is possible to add new variables to the end /// but NOT to modify already existing variables or change their order. /// NOTE: variables prefixed with '__DEPRECATED_' are deprecated and shouldn't be used. /// Their presence is maintained for compatibility and to prevent storage collision. // solhint-disable-next-line gas-struct-packing struct ZKChainStorage { /// @dev Storage of variables needed for deprecated diamond cut facet uint256[7] __DEPRECATED_diamondCutStorage; /// @notice Address which will exercise critical changes to the Diamond Proxy (upgrades, freezing & unfreezing). Replaced by CTM address __DEPRECATED_governor; /// @notice Address that the governor proposed as one that will replace it address __DEPRECATED_pendingGovernor; /// @notice List of permitted validators mapping(address validatorAddress => bool isValidator) validators; /// @dev Verifier contract. Used to verify aggregated proof for batches IVerifier verifier; /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch /// (batch 0 is genesis) uint256 totalBatchesExecuted; /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch uint256 totalBatchesVerified; /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed /// batch uint256 totalBatchesCommitted; /// @dev Stored hashed StoredBatch for batch number mapping(uint256 batchNumber => bytes32 batchHash) storedBatchHashes; /// @dev Stored root hashes of L2 -> L1 logs mapping(uint256 batchNumber => bytes32 l2LogsRootHash) l2LogsRootHashes; /// @dev Container that stores transactions requested from L1 PriorityQueue.Queue priorityQueue; /// @dev The smart contract that manages the list with permission to call contract functions address __DEPRECATED_allowList; VerifierParams __DEPRECATED_verifierParams; /// @notice Bytecode hash of bootloader program. /// @dev Used as an input to zkp-circuit. bytes32 l2BootloaderBytecodeHash; /// @notice Bytecode hash of default account (bytecode for EOA). /// @dev Used as an input to zkp-circuit. bytes32 l2DefaultAccountBytecodeHash; /// @dev Indicates that the porter may be touched on L2 transactions. /// @dev Used as an input to zkp-circuit. bool zkPorterIsAvailable; /// @dev The maximum number of the L2 gas that a user can request for L1 -> L2 transactions /// @dev This is the maximum number of L2 gas that is available for the "body" of the transaction, i.e. /// without overhead for proving the batch. uint256 priorityTxMaxGasLimit; /// @dev Storage of variables needed for upgrade facet UpgradeStorage __DEPRECATED_upgrades; /// @dev A mapping L2 batch number => message number => flag. /// @dev The L2 -> L1 log is sent for every withdrawal, so this mapping is serving as /// a flag to indicate that the message was already processed. /// @dev Used to indicate that eth withdrawal was already processed mapping(uint256 l2BatchNumber => mapping(uint256 l2ToL1MessageNumber => bool isFinalized)) isEthWithdrawalFinalized; /// @dev The most recent withdrawal time and amount reset uint256 __DEPRECATED_lastWithdrawalLimitReset; /// @dev The accumulated withdrawn amount during the withdrawal limit window uint256 __DEPRECATED_withdrawnAmountInWindow; /// @dev A mapping user address => the total deposited amount by the user mapping(address => uint256) __DEPRECATED_totalDepositedAmountPerUser; /// @dev Stores the protocol version. Note, that the protocol version may not only encompass changes to the /// smart contracts, but also to the node behavior. uint256 protocolVersion; /// @dev Hash of the system contract upgrade transaction. If 0, then no upgrade transaction needs to be done. bytes32 l2SystemContractsUpgradeTxHash; /// @dev Batch number where the upgrade transaction has happened. If 0, then no upgrade transaction has happened /// yet. uint256 l2SystemContractsUpgradeBatchNumber; /// @dev Address which will exercise non-critical changes to the Diamond Proxy (changing validator set & unfreezing) address admin; /// @notice Address that the admin proposed as one that will replace admin role address pendingAdmin; /// @dev Fee params used to derive gasPrice for the L1->L2 transactions. For L2 transactions, /// the bootloader gives enough freedom to the operator. /// @dev The value is only for the L1 deployment of the ZK Chain, since payment for all the priority transactions is /// charged at that level. FeeParams feeParams; /// @dev Address of the blob versioned hash getter smart contract used for EIP-4844 versioned hashes. /// @dev Used only for testing. address blobVersionedHashRetriever; /// @dev The chainId of the chain uint256 chainId; /// @dev The address of the bridgehub address bridgehub; /// @dev The address of the ChainTypeManager address chainTypeManager; /// @dev The address of the baseToken contract. Eth is address(1) address __DEPRECATED_baseToken; /// @dev The address of the baseTokenbridge. Eth also uses the shared bridge address __DEPRECATED_baseTokenBridge; /// @notice gasPriceMultiplier for each baseToken, so that each L1->L2 transaction pays for its transaction on the destination /// we multiply by the nominator, and divide by the denominator uint128 baseTokenGasPriceMultiplierNominator; uint128 baseTokenGasPriceMultiplierDenominator; /// @dev The optional address of the contract that has to be used for transaction filtering/whitelisting address transactionFilterer; /// @dev The address of the l1DAValidator contract. /// This contract is responsible for the verification of the correctness of the DA on L1. address l1DAValidator; /// @dev The address of the contract on L2 that is responsible for the data availability verification. /// This contract sends `l2DAValidatorOutputHash` to L1 via L2->L1 system log and it will routed to the `l1DAValidator` contract. address l2DAValidator; /// @dev the Asset Id of the baseToken bytes32 baseTokenAssetId; /// @dev If this ZKchain settles on this chain, then this is zero. Otherwise it is the address of the ZKchain that is a /// settlement layer for this ZKchain. (think about it as a 'forwarding' address for the chain that migrated away). address settlementLayer; /// @dev Priority tree, the new data structure for priority queue PriorityTree.Tree priorityTree; /// @dev Whether the chain is a permanent rollup. Note, that it only enforces the DA validator pair, but /// it does not enforce any other parameters, e.g. `pubdataPricingMode` bool isPermanentRollup; /// @notice Bytecode hash of evm emulator. /// @dev Used as an input to zkp-circuit. bytes32 l2EvmEmulatorBytecodeHash; }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /// @dev the offset for the system contracts uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15 /// @dev The offset from which the built-in, but user space contracts are located. uint160 constant USER_CONTRACTS_OFFSET = 0x10000; // 2^16 /// @dev The formal address of the initial program of the system: the bootloader address constant L2_BOOTLOADER_ADDRESS = address(SYSTEM_CONTRACTS_OFFSET + 0x01); /// @dev The address of the known code storage system contract address constant L2_KNOWN_CODE_STORAGE_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x04); /// @dev The address of the L2 deployer system contract. address constant L2_DEPLOYER_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x06); /// @dev The special reserved L2 address. It is located in the system contracts space but doesn't have deployed /// bytecode. /// @dev The L2 deployer system contract allows changing bytecodes on any address if the `msg.sender` is this address. /// @dev So, whenever the governor wants to redeploy system contracts, it just initiates the L1 upgrade call deployer /// system contract /// via the L1 -> L2 transaction with `sender == L2_FORCE_DEPLOYER_ADDR`. For more details see the /// `diamond-initializers` contracts. address constant L2_FORCE_DEPLOYER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x07); /// @dev The address of the special smart contract that can send arbitrary length message as an L2 log IL2ToL1Messenger constant L2_TO_L1_MESSENGER_SYSTEM_CONTRACT_ADDR = IL2ToL1Messenger( address(SYSTEM_CONTRACTS_OFFSET + 0x08) ); /// @dev The address of the eth token system contract address constant L2_BASE_TOKEN_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0a); /// @dev The address of the context system contract address constant L2_SYSTEM_CONTEXT_SYSTEM_CONTRACT_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0b); /// @dev The address of the pubdata chunk publisher contract address constant L2_PUBDATA_CHUNK_PUBLISHER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x11); /// @dev The address used to execute complex upgragedes, also used for the genesis upgrade address constant L2_COMPLEX_UPGRADER_ADDR = address(SYSTEM_CONTRACTS_OFFSET + 0x0f); /// @dev the address of the msg value system contract address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09); /// @dev The address used to execute the genesis upgrade address constant L2_GENESIS_UPGRADE_ADDR = address(USER_CONTRACTS_OFFSET + 0x01); /// @dev The address of the L2 bridge hub system contract, used to start L1->L2 transactions address constant L2_BRIDGEHUB_ADDR = address(USER_CONTRACTS_OFFSET + 0x02); /// @dev the address of the l2 asset router. address constant L2_ASSET_ROUTER_ADDR = address(USER_CONTRACTS_OFFSET + 0x03); /// @dev An l2 system contract address, used in the assetId calculation for native assets. /// This is needed for automatic bridging, i.e. without deploying the AssetHandler contract, /// if the assetId can be calculated with this address then it is in fact an NTV asset address constant L2_NATIVE_TOKEN_VAULT_ADDR = address(USER_CONTRACTS_OFFSET + 0x04); /// @dev the address of the l2 asset router. address constant L2_MESSAGE_ROOT_ADDR = address(USER_CONTRACTS_OFFSET + 0x05); /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Smart contract for sending arbitrary length messages to L1 * @dev by default ZkSync can send fixed-length messages on L1. * A fixed length message has 4 parameters `senderAddress`, `isService`, `key`, `value`, * the first one is taken from the context, the other three are chosen by the sender. * @dev To send a variable-length message we use this trick: * - This system contract accepts an arbitrary length message and sends a fixed length message with * parameters `senderAddress == this`, `isService == true`, `key == msg.sender`, `value == keccak256(message)`. * - The contract on L1 accepts all sent messages and if the message came from this system contract * it requires that the preimage of `value` be provided. */ interface IL2ToL1Messenger { /// @notice Sends an arbitrary length message to L1. /// @param _message The variable length message to be sent to L1. /// @return Returns the keccak256 hashed value of the message. function sendToL1(bytes calldata _message) external returns (bytes32); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IZKChainBase} from "../chain-interfaces/IZKChainBase.sol"; import {Diamond} from "../libraries/Diamond.sol"; import {FeeParams, PubdataPricingMode} from "../chain-deps/ZKChainStorage.sol"; import {ZKChainCommitment} from "../../common/Config.sol"; /// @title The interface of the Admin Contract that controls access rights for contract management. /// @author Matter Labs /// @custom:security-contact [email protected] interface IAdmin is IZKChainBase { /// @notice Starts the transfer of admin rights. Only the current admin can propose a new pending one. /// @notice New admin can accept admin rights by calling `acceptAdmin` function. /// @param _newPendingAdmin Address of the new admin function setPendingAdmin(address _newPendingAdmin) external; /// @notice Accepts transfer of admin rights. Only pending admin can accept the role. function acceptAdmin() external; /// @notice Change validator status (active or not active) /// @param _validator Validator address /// @param _active Active flag function setValidator(address _validator, bool _active) external; /// @notice Change zk porter availability /// @param _zkPorterIsAvailable The availability of zk porter shard function setPorterAvailability(bool _zkPorterIsAvailable) external; /// @notice Change the max L2 gas limit for L1 -> L2 transactions /// @param _newPriorityTxMaxGasLimit The maximum number of L2 gas that a user can request for L1 -> L2 transactions function setPriorityTxMaxGasLimit(uint256 _newPriorityTxMaxGasLimit) external; /// @notice Change the fee params for L1->L2 transactions /// @param _newFeeParams The new fee params function changeFeeParams(FeeParams calldata _newFeeParams) external; /// @notice Change the token multiplier for L1->L2 transactions function setTokenMultiplier(uint128 _nominator, uint128 _denominator) external; /// @notice Change the pubdata pricing mode before the first batch is processed /// @param _pricingMode The new pubdata pricing mode function setPubdataPricingMode(PubdataPricingMode _pricingMode) external; /// @notice Set the transaction filterer function setTransactionFilterer(address _transactionFilterer) external; /// @notice Allow EVM emulation on chain function allowEvmEmulation() external returns (bytes32 canonicalTxHash); /// @notice Perform the upgrade from the current protocol version with the corresponding upgrade data /// @param _protocolVersion The current protocol version from which upgrade is executed /// @param _cutData The diamond cut parameters that is executed in the upgrade function upgradeChainFromVersion(uint256 _protocolVersion, Diamond.DiamondCutData calldata _cutData) external; /// @notice Executes a proposed governor upgrade /// @dev Only the ChainTypeManager contract can execute the upgrade /// @param _diamondCut The diamond cut parameters to be executed function executeUpgrade(Diamond.DiamondCutData calldata _diamondCut) external; /// @notice Instantly pause the functionality of all freezable facets & their selectors /// @dev Only the governance mechanism may freeze Diamond Proxy function freezeDiamond() external; /// @notice Unpause the functionality of all freezable facets & their selectors /// @dev Only the CTM can unfreeze Diamond Proxy function unfreezeDiamond() external; function genesisUpgrade( address _l1GenesisUpgrade, address _ctmDeployer, bytes calldata _forceDeploymentData, bytes[] calldata _factoryDeps ) external; /// @notice Set the L1 DA validator address as well as the L2 DA validator address. /// @dev While in principle it is possible that updating only one of the addresses is needed, /// usually these should work in pair and L1 validator typically expects a specific input from the L2 Validator. /// That's why we change those together to prevent admins of chains from shooting themselves in the foot. /// @param _l1DAValidator The address of the L1 DA validator /// @param _l2DAValidator The address of the L2 DA validator function setDAValidatorPair(address _l1DAValidator, address _l2DAValidator) external; /// @notice Makes the chain as permanent rollup. /// @dev This is a security feature needed for chains that should be /// trusted to keep their data available even if the chain admin becomes malicious /// and tries to set the DA validator pair to something which does not publish DA to Ethereum. /// @dev DANGEROUS: once activated, there is no way back! function makePermanentRollup() external; /// @notice Porter availability status changes event IsPorterAvailableStatusUpdate(bool isPorterAvailable); /// @notice Validator's status changed event ValidatorStatusUpdate(address indexed validatorAddress, bool isActive); /// @notice pendingAdmin is changed /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin); /// @notice Admin changed event NewAdmin(address indexed oldAdmin, address indexed newAdmin); /// @notice Priority transaction max L2 gas limit changed event NewPriorityTxMaxGasLimit(uint256 oldPriorityTxMaxGasLimit, uint256 newPriorityTxMaxGasLimit); /// @notice Fee params for L1->L2 transactions changed event NewFeeParams(FeeParams oldFeeParams, FeeParams newFeeParams); /// @notice Validium mode status changed event PubdataPricingModeUpdate(PubdataPricingMode validiumMode); /// @notice The transaction filterer has been updated event NewTransactionFilterer(address oldTransactionFilterer, address newTransactionFilterer); /// @notice BaseToken multiplier for L1->L2 transactions changed event NewBaseTokenMultiplier( uint128 oldNominator, uint128 oldDenominator, uint128 newNominator, uint128 newDenominator ); /// @notice Emitted when an upgrade is executed. event ExecuteUpgrade(Diamond.DiamondCutData diamondCut); /// @notice Emitted when the migration to the new settlement layer is complete. event MigrationComplete(); /// @notice Emitted when the contract is frozen. event Freeze(); /// @notice Emitted when the contract is unfrozen. event Unfreeze(); /// @notice The EVM emulator has been enabled event EnableEvmEmulator(); /// @notice New pair of DA validators set event NewL2DAValidator(address indexed oldL2DAValidator, address indexed newL2DAValidator); event NewL1DAValidator(address indexed oldL1DAValidator, address indexed newL1DAValidator); event BridgeMint(address indexed _account, uint256 _amount); /// @dev Similar to IL1AssetHandler interface, used to send chains. function forwardedBridgeBurn( address _settlementLayer, address _originalCaller, bytes calldata _data ) external payable returns (bytes memory _bridgeMintData); /// @dev Similar to IL1AssetHandler interface, used to claim failed chain transfers. function forwardedBridgeRecoverFailedTransfer( uint256 _chainId, bytes32 _assetInfo, address _originalCaller, bytes calldata _chainData ) external payable; /// @dev Similar to IL1AssetHandler interface, used to receive chains. function forwardedBridgeMint(bytes calldata _data, bool _contractAlreadyDeployed) external payable; function prepareChainCommitment() external view returns (ZKChainCommitment memory commitment); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IZKChainBase} from "./IZKChainBase.sol"; /// @dev Enum used by L2 System Contracts to differentiate logs. enum SystemLogKey { L2_TO_L1_LOGS_TREE_ROOT_KEY, PACKED_BATCH_AND_L2_BLOCK_TIMESTAMP_KEY, CHAINED_PRIORITY_TXN_HASH_KEY, NUMBER_OF_LAYER_1_TXS_KEY, // Note, that it is important that `PREV_BATCH_HASH_KEY` has position // `4` since it is the same as it was in the previous protocol version and // it is the only one that is emitted before the system contracts are upgraded. PREV_BATCH_HASH_KEY, L2_DA_VALIDATOR_OUTPUT_HASH_KEY, USED_L2_DA_VALIDATOR_ADDRESS_KEY, EXPECTED_SYSTEM_CONTRACT_UPGRADE_TX_HASH_KEY } struct LogProcessingOutput { uint256 numberOfLayer1Txs; bytes32 chainedPriorityTxsHash; bytes32 previousBatchHash; bytes32 pubdataHash; bytes32 stateDiffHash; bytes32 l2LogsTreeRoot; uint256 packedBatchAndL2BlockTimestamp; bytes32 l2DAValidatorOutputHash; } /// @dev Offset used to pull Address From Log. Equal to 4 (bytes for isService) uint256 constant L2_LOG_ADDRESS_OFFSET = 4; /// @dev Offset used to pull Key From Log. Equal to 4 (bytes for isService) + 20 (bytes for address) uint256 constant L2_LOG_KEY_OFFSET = 24; /// @dev Offset used to pull Value From Log. Equal to 4 (bytes for isService) + 20 (bytes for address) + 32 (bytes for key) uint256 constant L2_LOG_VALUE_OFFSET = 56; /// @dev Max number of blobs currently supported uint256 constant MAX_NUMBER_OF_BLOBS = 6; /// @dev The number of blobs that must be present in the commitment to a batch. /// It represents the maximal number of blobs that circuits can support and can be larger /// than the maximal number of blobs supported by the contract (`MAX_NUMBER_OF_BLOBS`). uint256 constant TOTAL_BLOBS_IN_COMMITMENT = 16; /// @title The interface of the ZKsync Executor contract capable of processing events emitted in the ZKsync protocol. /// @author Matter Labs /// @custom:security-contact [email protected] interface IExecutor is IZKChainBase { /// @notice Rollup batch stored data /// @param batchNumber Rollup batch number /// @param batchHash Hash of L2 batch /// @param indexRepeatedStorageChanges The serial number of the shortcut index that's used as a unique identifier for storage keys that were used twice or more /// @param numberOfLayer1Txs Number of priority operations to be processed /// @param priorityOperationsHash Hash of all priority operations from this batch /// @param l2LogsTreeRoot Root hash of tree that contains L2 -> L1 messages from this batch /// @param timestamp Rollup batch timestamp, have the same format as Ethereum batch constant /// @param commitment Verified input for the ZKsync circuit // solhint-disable-next-line gas-struct-packing struct StoredBatchInfo { uint64 batchNumber; bytes32 batchHash; uint64 indexRepeatedStorageChanges; uint256 numberOfLayer1Txs; bytes32 priorityOperationsHash; bytes32 l2LogsTreeRoot; uint256 timestamp; bytes32 commitment; } /// @notice Data needed to commit new batch /// @param batchNumber Number of the committed batch /// @param timestamp Unix timestamp denoting the start of the batch execution /// @param indexRepeatedStorageChanges The serial number of the shortcut index that's used as a unique identifier for storage keys that were used twice or more /// @param newStateRoot The state root of the full state tree /// @param numberOfLayer1Txs Number of priority operations to be processed /// @param priorityOperationsHash Hash of all priority operations from this batch /// @param bootloaderHeapInitialContentsHash Hash of the initial contents of the bootloader heap. In practice it serves as the commitment to the transactions in the batch. /// @param eventsQueueStateHash Hash of the events queue state. In practice it serves as the commitment to the events in the batch. /// @param systemLogs concatenation of all L2 -> L1 system logs in the batch /// @param operatorDAInput Packed pubdata commitments/data. /// @dev pubdataCommitments format: This will always start with a 1 byte pubdataSource flag. Current allowed values are 0 (calldata) or 1 (blobs) /// kzg: list of: opening point (16 bytes) || claimed value (32 bytes) || commitment (48 bytes) || proof (48 bytes) = 144 bytes /// calldata: pubdataCommitments.length - 1 - 32 bytes of pubdata /// and 32 bytes appended to serve as the blob commitment part for the aux output part of the batch commitment /// @dev For 2 blobs we will be sending 288 bytes of calldata instead of the full amount for pubdata. /// @dev When using calldata, we only need to send one blob commitment since the max number of bytes in calldata fits in a single blob and we can pull the /// linear hash from the system logs struct CommitBatchInfo { uint64 batchNumber; uint64 timestamp; uint64 indexRepeatedStorageChanges; bytes32 newStateRoot; uint256 numberOfLayer1Txs; bytes32 priorityOperationsHash; bytes32 bootloaderHeapInitialContentsHash; bytes32 eventsQueueStateHash; bytes systemLogs; bytes operatorDAInput; } /// @notice Function called by the operator to commit new batches. It is responsible for: /// - Verifying the correctness of their timestamps. /// - Processing their L2->L1 logs. /// - Storing batch commitments. /// @param _chainId Chain ID of the chain. /// @param _processFrom The batch number from which the processing starts. /// @param _processTo The batch number at which the processing ends. /// @param _commitData The encoded data of the new batches to be committed. function commitBatchesSharedBridge( uint256 _chainId, uint256 _processFrom, uint256 _processTo, bytes calldata _commitData ) external; /// @notice Batches commitment verification. /// @dev Only verifies batch commitments without any other processing. /// @param _chainId Chain ID of the chain. /// @param _processBatchFrom The batch number from which the verification starts. /// @param _processBatchTo The batch number at which the verification ends. /// @param _proofData The encoded data of the new batches to be verified. function proveBatchesSharedBridge( uint256 _chainId, uint256 _processBatchFrom, uint256 _processBatchTo, bytes calldata _proofData ) external; /// @notice The function called by the operator to finalize (execute) batches. It is responsible for: /// - Processing all pending operations (commpleting priority requests). /// - Finalizing this batch (i.e. allowing to withdraw funds from the system) /// @param _chainId Chain ID of the chain. /// @param _processFrom The batch number from which the execution starts. /// @param _processTo The batch number at which the execution ends. /// @param _executeData The encoded data of the new batches to be executed. function executeBatchesSharedBridge( uint256 _chainId, uint256 _processFrom, uint256 _processTo, bytes calldata _executeData ) external; /// @notice Reverts unexecuted batches /// @param _chainId Chain ID of the chain /// @param _newLastBatch batch number after which batches should be reverted /// NOTE: Doesn't delete the stored data about batches, but only decreases /// counters that are responsible for the number of batches function revertBatchesSharedBridge(uint256 _chainId, uint256 _newLastBatch) external; /// @notice Event emitted when a batch is committed /// @param batchNumber Number of the batch committed /// @param batchHash Hash of the L2 batch /// @param commitment Calculated input for the ZKsync circuit /// @dev It has the name "BlockCommit" and not "BatchCommit" due to backward compatibility considerations event BlockCommit(uint256 indexed batchNumber, bytes32 indexed batchHash, bytes32 indexed commitment); /// @notice Event emitted when batches are verified /// @param previousLastVerifiedBatch Batch number of the previous last verified batch /// @param currentLastVerifiedBatch Batch number of the current last verified batch /// @dev It has the name "BlocksVerification" and not "BatchesVerification" due to backward compatibility considerations event BlocksVerification(uint256 indexed previousLastVerifiedBatch, uint256 indexed currentLastVerifiedBatch); /// @notice Event emitted when a batch is executed /// @param batchNumber Number of the batch executed /// @param batchHash Hash of the L2 batch /// @param commitment Verified input for the ZKsync circuit /// @dev It has the name "BlockExecution" and not "BatchExecution" due to backward compatibility considerations event BlockExecution(uint256 indexed batchNumber, bytes32 indexed batchHash, bytes32 indexed commitment); /// @notice Event emitted when batches are reverted /// @param totalBatchesCommitted Total number of committed batches after the revert /// @param totalBatchesVerified Total number of verified batches after the revert /// @param totalBatchesExecuted Total number of executed batches /// @dev It has the name "BlocksRevert" and not "BatchesRevert" due to backward compatibility considerations event BlocksRevert(uint256 totalBatchesCommitted, uint256 totalBatchesVerified, uint256 totalBatchesExecuted); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {VerifierParams} from "../chain-interfaces/IVerifier.sol"; import {PubdataPricingMode} from "../chain-deps/ZKChainStorage.sol"; import {IZKChainBase} from "./IZKChainBase.sol"; /// @title The interface of the Getters Contract that implements functions for getting contract state from outside the blockchain. /// @author Matter Labs /// @custom:security-contact [email protected] /// @dev Most of the methods simply return the values that correspond to the current diamond proxy and possibly /// not to the ZK Chain as a whole. For example, if the chain is migrated to another settlement layer, the values returned /// by this facet will correspond to the values stored on this chain and possilbly not the canonical state of the chain. interface IGetters is IZKChainBase { /*////////////////////////////////////////////////////////////// CUSTOM GETTERS //////////////////////////////////////////////////////////////*/ /// @return The address of the verifier smart contract function getVerifier() external view returns (address); /// @return The address of the current admin function getAdmin() external view returns (address); /// @return The address of the pending admin function getPendingAdmin() external view returns (address); /// @return The address of the bridgehub function getBridgehub() external view returns (address); /// @return The address of the state transition function getChainTypeManager() external view returns (address); /// @return The chain ID function getChainId() external view returns (uint256); /// @return The address of the base token function getBaseToken() external view returns (address); /// @return The address of the base token function getBaseTokenAssetId() external view returns (bytes32); /// @return The total number of batches that were committed function getTotalBatchesCommitted() external view returns (uint256); /// @return The total number of batches that were committed & verified function getTotalBatchesVerified() external view returns (uint256); /// @return The total number of batches that were committed & verified & executed function getTotalBatchesExecuted() external view returns (uint256); // @return Address of transaction filterer function getTransactionFilterer() external view returns (address); /// @return The total number of priority operations that were added to the priority queue, including all processed ones function getTotalPriorityTxs() external view returns (uint256); /// @return The start index of the priority tree, i.e. the index of the first priority operation that /// was included into the priority tree. function getPriorityTreeStartIndex() external view returns (uint256); /// @return The root hash of the priority tree function getPriorityTreeRoot() external view returns (bytes32); /// @return Whether the priority queue is active, i.e. whether new priority operations are appended to it. /// Once the chain processes all the transactions that were present in the priority queue, all the L1->L2 related /// operations will start to get done using the priority tree. function isPriorityQueueActive() external view returns (bool); /// @notice The function that returns the first unprocessed priority transaction. /// @dev Returns zero if and only if no operations were processed from the queue. /// @dev If all the transactions were processed, it will return the last processed index, so /// in case exactly *unprocessed* transactions are needed, one should check that getPriorityQueueSize() is greater than 0. /// @return Index of the oldest priority operation that wasn't processed yet function getFirstUnprocessedPriorityTx() external view returns (uint256); /// @return The number of priority operations currently in the queue function getPriorityQueueSize() external view returns (uint256); /// @return Whether the address has a validator access function isValidator(address _address) external view returns (bool); /// @return merkleRoot Merkle root of the tree with L2 logs for the selected batch function l2LogsRootHash(uint256 _batchNumber) external view returns (bytes32 merkleRoot); /// @notice For unfinalized (non executed) batches may change /// @dev returns zero for non-committed batches /// @return The hash of committed L2 batch. function storedBatchHash(uint256 _batchNumber) external view returns (bytes32); /// @return Bytecode hash of bootloader program. function getL2BootloaderBytecodeHash() external view returns (bytes32); /// @return Bytecode hash of default account (bytecode for EOA). function getL2DefaultAccountBytecodeHash() external view returns (bytes32); /// @return Bytecode hash of EVM emulator. function getL2EvmEmulatorBytecodeHash() external view returns (bytes32); /// @return Verifier parameters. /// @dev This function is deprecated and will soon be removed. function getVerifierParams() external view returns (VerifierParams memory); /// @return Whether the diamond is frozen or not function isDiamondStorageFrozen() external view returns (bool); /// @return The current packed protocol version. To access human-readable version, use `getSemverProtocolVersion` function. function getProtocolVersion() external view returns (uint256); /// @return The tuple of (major, minor, patch) protocol version. function getSemverProtocolVersion() external view returns (uint32, uint32, uint32); /// @return The upgrade system contract transaction hash, 0 if the upgrade is not initialized function getL2SystemContractsUpgradeTxHash() external view returns (bytes32); /// @return The L2 batch number in which the upgrade transaction was processed. /// @dev It is equal to 0 in the following two cases: /// - No upgrade transaction has ever been processed. /// - The upgrade transaction has been processed and the batch with such transaction has been /// executed (i.e. finalized). function getL2SystemContractsUpgradeBatchNumber() external view returns (uint256); /// @return The maximum number of L2 gas that a user can request for L1 -> L2 transactions function getPriorityTxMaxGasLimit() external view returns (uint256); /// @return Whether a withdrawal has been finalized. /// @param _l2BatchNumber The L2 batch number within which the withdrawal happened. /// @param _l2MessageIndex The index of the L2->L1 message denoting the withdrawal. function isEthWithdrawalFinalized(uint256 _l2BatchNumber, uint256 _l2MessageIndex) external view returns (bool); /// @return The pubdata pricing mode. function getPubdataPricingMode() external view returns (PubdataPricingMode); /// @return the baseTokenGasPriceMultiplierNominator, used to compare the baseTokenPrice to ether for L1->L2 transactions function baseTokenGasPriceMultiplierNominator() external view returns (uint128); /// @return the baseTokenGasPriceMultiplierDenominator, used to compare the baseTokenPrice to ether for L1->L2 transactions function baseTokenGasPriceMultiplierDenominator() external view returns (uint128); /*////////////////////////////////////////////////////////////// DIAMOND LOUPE //////////////////////////////////////////////////////////////*/ /// @notice Faсet structure compatible with the EIP-2535 diamond loupe /// @param addr The address of the facet contract /// @param selectors The NON-sorted array with selectors associated with facet struct Facet { address addr; bytes4[] selectors; } /// @return result All facet addresses and their function selectors function facets() external view returns (Facet[] memory); /// @return NON-sorted array with function selectors supported by a specific facet function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory); /// @return facets NON-sorted array of facet addresses supported on diamond function facetAddresses() external view returns (address[] memory facets); /// @return facet The facet address associated with a selector. Zero if the selector is not added to the diamond function facetAddress(bytes4 _selector) external view returns (address facet); /// @return Whether the selector can be frozen by the admin or always accessible function isFunctionFreezable(bytes4 _selector) external view returns (bool); /// @return isFreezable Whether the facet can be frozen by the admin or always accessible function isFacetFreezable(address _facet) external view returns (bool isFreezable); /// @return The address of the current settlement layer. function getSettlementLayer() external view returns (address); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {IZKChainBase} from "./IZKChainBase.sol"; import {L2CanonicalTransaction, L2Log, L2Message, TxStatus, BridgehubL2TransactionRequest} from "../../common/Messaging.sol"; /// @title The interface of the ZKsync Mailbox contract that provides interfaces for L1 <-> L2 interaction. /// @author Matter Labs /// @custom:security-contact [email protected] interface IMailbox is IZKChainBase { /// @notice Prove that a specific arbitrary-length message was sent in a specific L2 batch number /// @param _batchNumber The executed L2 batch number in which the message appeared /// @param _index The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _message Information about the sent message: sender address, the message itself, tx index in the L2 batch where the message was sent /// @param _proof Merkle proof for inclusion of L2 log that was sent with the message /// @return Whether the proof is valid function proveL2MessageInclusion( uint256 _batchNumber, uint256 _index, L2Message calldata _message, bytes32[] calldata _proof ) external view returns (bool); /// @notice Prove that a specific L2 log was sent in a specific L2 batch /// @param _batchNumber The executed L2 batch number in which the log appeared /// @param _index The position of the l2log in the L2 logs Merkle tree /// @param _log Information about the sent log /// @param _proof Merkle proof for inclusion of the L2 log /// @return Whether the proof is correct and L2 log is included in batch function proveL2LogInclusion( uint256 _batchNumber, uint256 _index, L2Log memory _log, bytes32[] calldata _proof ) external view returns (bool); /// @notice Prove that the L1 -> L2 transaction was processed with the specified status. /// @param _l2TxHash The L2 canonical transaction hash /// @param _l2BatchNumber The L2 batch number where the transaction was processed /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _l2TxNumberInBatch The L2 transaction number in the batch, in which the log was sent /// @param _merkleProof The Merkle proof of the processing L1 -> L2 transaction /// @param _status The execution status of the L1 -> L2 transaction (true - success & 0 - fail) /// @return Whether the proof is correct and the transaction was actually executed with provided status /// NOTE: It may return `false` for incorrect proof, but it doesn't mean that the L1 -> L2 transaction has an opposite status! function proveL1ToL2TransactionStatus( bytes32 _l2TxHash, uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes32[] calldata _merkleProof, TxStatus _status ) external view returns (bool); /// @notice Finalize the withdrawal and release funds /// @param _l2BatchNumber The L2 batch number where the withdrawal was processed /// @param _l2MessageIndex The position in the L2 logs Merkle tree of the l2Log that was sent with the message /// @param _l2TxNumberInBatch The L2 transaction number in a batch, in which the log was sent /// @param _message The L2 withdraw data, stored in an L2 -> L1 message /// @param _merkleProof The Merkle proof of the inclusion L2 -> L1 message about withdrawal initialization function finalizeEthWithdrawal( uint256 _l2BatchNumber, uint256 _l2MessageIndex, uint16 _l2TxNumberInBatch, bytes calldata _message, bytes32[] calldata _merkleProof ) external; /// @notice Request execution of L2 transaction from L1. /// @param _contractL2 The L2 receiver address /// @param _l2Value `msg.value` of L2 transaction /// @param _calldata The input of the L2 transaction /// @param _l2GasLimit Maximum amount of L2 gas that transaction can consume during execution on L2 /// @param _l2GasPerPubdataByteLimit The maximum amount L2 gas that the operator may charge the user for single byte of pubdata. /// @param _factoryDeps An array of L2 bytecodes that will be marked as known on L2 /// @param _refundRecipient The address on L2 that will receive the refund for the transaction. /// @dev If the L2 deposit finalization transaction fails, the `_refundRecipient` will receive the `_l2Value`. /// Please note, the contract may change the refund recipient's address to eliminate sending funds to addresses out of control. /// - If `_refundRecipient` is a contract on L1, the refund will be sent to the aliased `_refundRecipient`. /// - If `_refundRecipient` is set to `address(0)` and the sender has NO deployed bytecode on L1, the refund will be sent to the `msg.sender` address. /// - If `_refundRecipient` is set to `address(0)` and the sender has deployed bytecode on L1, the refund will be sent to the aliased `msg.sender` address. /// @dev The address aliasing of L1 contracts as refund recipient on L2 is necessary to guarantee that the funds are controllable, /// since address aliasing to the from address for the L2 tx will be applied if the L1 `msg.sender` is a contract. /// Without address aliasing for L1 contracts as refund recipients they would not be able to make proper L2 tx requests /// through the Mailbox to use or withdraw the funds from L2, and the funds would be lost. /// @return canonicalTxHash The hash of the requested L2 transaction. This hash can be used to follow the transaction status function requestL2Transaction( address _contractL2, uint256 _l2Value, bytes calldata _calldata, uint256 _l2GasLimit, uint256 _l2GasPerPubdataByteLimit, bytes[] calldata _factoryDeps, address _refundRecipient ) external payable returns (bytes32 canonicalTxHash); /// @notice when requesting transactions through the bridgehub function bridgehubRequestL2Transaction( BridgehubL2TransactionRequest calldata _request ) external returns (bytes32 canonicalTxHash); /// @dev On the Gateway the chain's mailbox receives the tx from the bridgehub. function bridgehubRequestL2TransactionOnGateway(bytes32 _canonicalTxHash, uint64 _expirationTimestamp) external; /// @notice Request execution of service L2 transaction from L1. /// @dev Used for chain configuration. Can be called only by DiamondProxy itself. /// @param _contractL2 The L2 receiver address /// @param _l2Calldata The input of the L2 transaction function requestL2ServiceTransaction( address _contractL2, bytes calldata _l2Calldata ) external returns (bytes32 canonicalTxHash); /// @dev On L1 we have to forward to the Gateway's mailbox which sends to the Bridgehub on the Gw /// @param _chainId the chainId of the chain /// @param _canonicalTxHash the canonical transaction hash /// @param _expirationTimestamp the expiration timestamp function requestL2TransactionToGatewayMailbox( uint256 _chainId, bytes32 _canonicalTxHash, uint64 _expirationTimestamp ) external returns (bytes32 canonicalTxHash); /// @notice Estimates the cost in Ether of requesting execution of an L2 transaction from L1 /// @param _gasPrice expected L1 gas price at which the user requests the transaction execution /// @param _l2GasLimit Maximum amount of L2 gas that transaction can consume during execution on L2 /// @param _l2GasPerPubdataByteLimit The maximum amount of L2 gas that the operator may charge the user for a single byte of pubdata. /// @return The estimated ETH spent on L2 gas for the transaction function l2TransactionBaseCost( uint256 _gasPrice, uint256 _l2GasLimit, uint256 _l2GasPerPubdataByteLimit ) external view returns (uint256); /// @dev Proves that a certain leaf was included as part of the log merkle tree. /// @dev Warning: this function does not enforce any additional checks on the structure /// of the leaf. This means that it can accept intermediate nodes of the Merkle tree as a `_leaf` as /// well as the default "empty" leaves. It is the responsibility of the caller to ensure that the /// `_leaf` is a hash of a valid leaf. function proveL2LeafInclusion( uint256 _batchNumber, uint256 _batchRootMask, bytes32 _leaf, bytes32[] calldata _proof ) external view returns (bool); /// @notice transfer Eth to shared bridge as part of migration process // function transferEthToSharedBridge() external; // function relayTxSL( // address _to, // L2CanonicalTransaction memory _transaction, // bytes[] memory _factoryDeps, // bytes32 _canonicalTxHash, // uint64 _expirationTimestamp // ) external; // function freeAcceptTx( // L2CanonicalTransaction memory _transaction, // bytes[] memory _factoryDeps, // bytes32 _canonicalTxHash, // uint64 _expirationTimestamp // ) external; // function acceptFreeRequestFromBridgehub(BridgehubL2TransactionRequest calldata _request) external; /// @notice New priority request event. Emitted when a request is placed into the priority queue /// @param txId Serial number of the priority operation /// @param txHash keccak256 hash of encoded transaction representation /// @param expirationTimestamp Timestamp up to which priority request should be processed /// @param transaction The whole transaction structure that is requested to be executed on L2 /// @param factoryDeps An array of bytecodes that were shown in the L1 public data. /// Will be marked as known bytecodes in L2 event NewPriorityRequest( uint256 txId, bytes32 txHash, uint64 expirationTimestamp, L2CanonicalTransaction transaction, bytes[] factoryDeps ); /// @notice New relayed priority request event. It is emitted on a chain that is deployed /// on top of the gateway when it receives a request relayed via the Bridgehub. /// @dev IMPORTANT: this event most likely will be removed in the future, so /// no one should rely on it for indexing purposes. /// @param txId Serial number of the priority operation /// @param txHash keccak256 hash of encoded transaction representation /// @param expirationTimestamp Timestamp up to which priority request should be processed event NewRelayedPriorityTransaction(uint256 txId, bytes32 txHash, uint64 expirationTimestamp); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; /// @author Matter Labs /// @custom:security-contact [email protected] interface IL1AssetDeploymentTracker { function bridgeCheckCounterpartAddress( uint256 _chainId, bytes32 _assetId, address _originalCaller, address _assetHandlerAddressOnCounterpart ) external view; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {IL1Nullifier} from "../interfaces/IL1Nullifier.sol"; import {INativeTokenVault} from "./INativeTokenVault.sol"; import {IL1AssetDeploymentTracker} from "../interfaces/IL1AssetDeploymentTracker.sol"; /// @title L1 Native token vault contract interface /// @author Matter Labs /// @custom:security-contact [email protected] /// @notice The NTV is an Asset Handler for the L1AssetRouter to handle native tokens // is IL1AssetHandler, IL1BaseTokenAssetHandler { interface IL1NativeTokenVault is INativeTokenVault, IL1AssetDeploymentTracker { /// @notice The L1Nullifier contract function L1_NULLIFIER() external view returns (IL1Nullifier); /// @notice Returns the total number of specific tokens locked for some chain function chainBalance(uint256 _chainId, bytes32 _assetId) external view returns (uint256); /// @notice Registers ETH token function registerEthToken() external; event TokenBeaconUpdated(address indexed l2TokenBeacon); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /** * @author Matter Labs * @custom:security-contact [email protected] * @notice The library for unchecked math. */ library UncheckedMath { function uncheckedInc(uint256 _number) internal pure returns (uint256) { unchecked { return _number + 1; } } function uncheckedAdd(uint256 _lhs, uint256 _rhs) internal pure returns (uint256) { unchecked { return _lhs + _rhs; } } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /// @notice Part of the configuration parameters of ZKP circuits struct VerifierParams { bytes32 recursionNodeLevelVkHash; bytes32 recursionLeafLevelVkHash; bytes32 recursionCircuitsSetVksHash; } /// @title The interface of the Verifier contract, responsible for the zero knowledge proof verification. /// @author Matter Labs /// @custom:security-contact [email protected] interface IVerifier { /// @dev Verifies a zk-SNARK proof. /// @return A boolean value indicating whether the zk-SNARK proof is valid. /// Note: The function may revert execution instead of returning false in some cases. function verify(uint256[] calldata _publicInputs, uint256[] calldata _proof) external view returns (bool); /// @notice Calculates a keccak256 hash of the runtime loaded verification keys. /// @return vkHash The keccak256 hash of the loaded verification keys. function verificationKeyHash() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {QueueIsEmpty} from "../../common/L1ContractErrors.sol"; /// @notice The structure that contains meta information of the L2 transaction that was requested from L1 /// @dev The weird size of fields was selected specifically to minimize the structure storage size /// @param canonicalTxHash Hashed L2 transaction data that is needed to process it /// @param expirationTimestamp Expiration timestamp for this request (must be satisfied before) /// @param layer2Tip Additional payment to the validator as an incentive to perform the operation struct PriorityOperation { bytes32 canonicalTxHash; uint64 expirationTimestamp; uint192 layer2Tip; } /// @author Matter Labs /// @custom:security-contact [email protected] /// @dev The library provides the API to interact with the priority queue container /// @dev Order of processing operations from queue - FIFO (Fist in - first out) library PriorityQueue { using PriorityQueue for Queue; /// @notice Container that stores priority operations /// @param data The inner mapping that saves priority operation by its index /// @param head The pointer to the first unprocessed priority operation, equal to the tail if the queue is empty /// @param tail The pointer to the free slot struct Queue { mapping(uint256 priorityOpId => PriorityOperation priorityOp) data; uint256 tail; uint256 head; } /// @notice Returns zero if and only if no operations were processed from the queue /// @return Index of the oldest priority operation that wasn't processed yet function getFirstUnprocessedPriorityTx(Queue storage _queue) internal view returns (uint256) { return _queue.head; } /// @return The total number of priority operations that were added to the priority queue, including all processed ones function getTotalPriorityTxs(Queue storage _queue) internal view returns (uint256) { return _queue.tail; } /// @return The total number of unprocessed priority operations in a priority queue function getSize(Queue storage _queue) internal view returns (uint256) { return uint256(_queue.tail - _queue.head); } /// @return Whether the priority queue contains no operations function isEmpty(Queue storage _queue) internal view returns (bool) { return _queue.tail == _queue.head; } /// @notice Add the priority operation to the end of the priority queue function pushBack(Queue storage _queue, PriorityOperation memory _operation) internal { // Save value into the stack to avoid double reading from the storage uint256 tail = _queue.tail; _queue.data[tail] = _operation; _queue.tail = tail + 1; } /// @return The first unprocessed priority operation from the queue function front(Queue storage _queue) internal view returns (PriorityOperation memory) { // priority queue is empty if (_queue.isEmpty()) { revert QueueIsEmpty(); } return _queue.data[_queue.head]; } /// @notice Remove the first unprocessed priority operation from the queue /// @return priorityOperation that was popped from the priority queue function popFront(Queue storage _queue) internal returns (PriorityOperation memory priorityOperation) { // priority queue is empty if (_queue.isEmpty()) { revert QueueIsEmpty(); } // Save value into the stack to avoid double reading from the storage uint256 head = _queue.head; priorityOperation = _queue.data[head]; delete _queue.data[head]; _queue.head = head + 1; } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the zkSync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {DynamicIncrementalMerkle} from "../../common/libraries/DynamicIncrementalMerkle.sol"; import {Merkle} from "../../common/libraries/Merkle.sol"; import {PriorityTreeCommitment} from "../../common/Config.sol"; import {NotHistoricalRoot, InvalidCommitment, InvalidStartIndex, InvalidUnprocessedIndex, InvalidNextLeafIndex} from "../L1StateTransitionErrors.sol"; struct PriorityOpsBatchInfo { bytes32[] leftPath; bytes32[] rightPath; bytes32[] itemHashes; } bytes32 constant ZERO_LEAF_HASH = keccak256(""); library PriorityTree { using PriorityTree for Tree; using DynamicIncrementalMerkle for DynamicIncrementalMerkle.Bytes32PushTree; struct Tree { uint256 startIndex; // priority tree started accepting priority ops from this index uint256 unprocessedIndex; // relative to `startIndex` mapping(bytes32 => bool) historicalRoots; DynamicIncrementalMerkle.Bytes32PushTree tree; } /// @notice Returns zero if and only if no operations were processed from the tree /// @return Index of the oldest priority operation that wasn't processed yet function getFirstUnprocessedPriorityTx(Tree storage _tree) internal view returns (uint256) { return _tree.startIndex + _tree.unprocessedIndex; } /// @return The total number of priority operations that were added to the priority queue, including all processed ones function getTotalPriorityTxs(Tree storage _tree) internal view returns (uint256) { return _tree.startIndex + _tree.tree._nextLeafIndex; } /// @return The total number of unprocessed priority operations in a priority queue function getSize(Tree storage _tree) internal view returns (uint256) { return _tree.tree._nextLeafIndex - _tree.unprocessedIndex; } /// @notice Add the priority operation to the end of the priority queue function push(Tree storage _tree, bytes32 _hash) internal { (, bytes32 newRoot) = _tree.tree.push(_hash); _tree.historicalRoots[newRoot] = true; } /// @notice Set up the tree function setup(Tree storage _tree, uint256 _startIndex) internal { bytes32 initialRoot = _tree.tree.setup(ZERO_LEAF_HASH); _tree.historicalRoots[initialRoot] = true; _tree.startIndex = _startIndex; } /// @return Returns the tree root. function getRoot(Tree storage _tree) internal view returns (bytes32) { return _tree.tree.root(); } /// @param _root The root to check. /// @return Returns true if the root is a historical root. function isHistoricalRoot(Tree storage _tree, bytes32 _root) internal view returns (bool) { return _tree.historicalRoots[_root]; } /// @notice Process the priority operations of a batch. /// @dev Note, that the function below only checks that a certain segment of items is present in the tree. /// It does not check that e.g. there are no zero items inside the provided `itemHashes`, so in theory proofs /// that include non-existing priority operations could be created. This function relies on the fact /// that the `itemHashes` of `_priorityOpsData` are hashes of valid priority transactions. /// This fact is ensured by the fact the rolling hash of those is sent to the Executor by the bootloader /// and so assuming that zero knowledge proofs are correct, so is the structure of the `itemHashes`. function processBatch(Tree storage _tree, PriorityOpsBatchInfo memory _priorityOpsData) internal { if (_priorityOpsData.itemHashes.length > 0) { bytes32 expectedRoot = Merkle.calculateRootPaths( _priorityOpsData.leftPath, _priorityOpsData.rightPath, _tree.unprocessedIndex, _priorityOpsData.itemHashes ); if (!_tree.historicalRoots[expectedRoot]) { revert NotHistoricalRoot(); } _tree.unprocessedIndex += _priorityOpsData.itemHashes.length; } } /// @notice Allows to skip a certain number of operations. /// @param _lastUnprocessed The new expected id of the unprocessed transaction. /// @dev It is used when the corresponding transactions have been processed by priority queue. function skipUntil(Tree storage _tree, uint256 _lastUnprocessed) internal { if (_tree.startIndex > _lastUnprocessed) { // Nothing to do, return return; } uint256 newUnprocessedIndex = _lastUnprocessed - _tree.startIndex; if (newUnprocessedIndex <= _tree.unprocessedIndex) { // These transactions were already processed, skip. return; } _tree.unprocessedIndex = newUnprocessedIndex; } /// @notice Initialize a chain from a commitment. function initFromCommitment(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal { uint256 height = _commitment.sides.length; // Height, including the root node. if (height == 0) { revert InvalidCommitment(); } _tree.startIndex = _commitment.startIndex; _tree.unprocessedIndex = _commitment.unprocessedIndex; _tree.tree._nextLeafIndex = _commitment.nextLeafIndex; _tree.tree._sides = _commitment.sides; bytes32 zero = ZERO_LEAF_HASH; _tree.tree._zeros = new bytes32[](height); for (uint256 i; i < height; ++i) { _tree.tree._zeros[i] = zero; zero = Merkle.efficientHash(zero, zero); } _tree.historicalRoots[_tree.tree.root()] = true; } /// @notice Reinitialize the tree from a commitment on L1. function l1Reinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal { if (_tree.startIndex != _commitment.startIndex) { revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex); } if (_tree.unprocessedIndex > _commitment.unprocessedIndex) { revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex); } if (_tree.tree._nextLeafIndex < _commitment.nextLeafIndex) { revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex); } _tree.unprocessedIndex = _commitment.unprocessedIndex; } /// @notice Reinitialize the tree from a commitment on GW. function checkGWReinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal view { if (_tree.startIndex != _commitment.startIndex) { revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex); } if (_tree.unprocessedIndex > _commitment.unprocessedIndex) { revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex); } if (_tree.tree._nextLeafIndex > _commitment.nextLeafIndex) { revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex); } } /// @notice Returns the commitment to the priority tree. function getCommitment(Tree storage _tree) internal view returns (PriorityTreeCommitment memory commitment) { commitment.nextLeafIndex = _tree.tree._nextLeafIndex; commitment.startIndex = _tree.startIndex; commitment.unprocessedIndex = _tree.unprocessedIndex; commitment.sides = _tree.tree._sides; } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; /// @title The interface of the ZKsync contract, responsible for the main ZKsync logic. /// @author Matter Labs /// @custom:security-contact [email protected] interface IZKChainBase { /// @return Returns facet name. function getName() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {Merkle} from "./Merkle.sol"; import {Arrays} from "@openzeppelin/contracts-v4/utils/Arrays.sol"; /** * @dev Library for managing https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] data structures. * * Each tree is a complete binary tree with the ability to sequentially insert leaves, changing them from a zero to a * non-zero value and updating its root. This structure allows inserting commitments (or other entries) that are not * stored, but can be proven to be part of the tree at a later time if the root is kept. See {MerkleProof}. * * A tree is defined by the following parameters: * * * Depth: The number of levels in the tree, it also defines the maximum number of leaves as 2**depth. * * Zero value: The value that represents an empty leaf. Used to avoid regular zero values to be part of the tree. * * Hashing function: A cryptographic hash function used to produce internal nodes. * * This is a fork of OpenZeppelin's [`MerkleTree`](https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9af280dc4b45ee5bda96ba47ff829b407eaab67e/contracts/utils/structs/MerkleTree.sol) * library, with the changes to support dynamic tree growth (doubling the size when full). */ library DynamicIncrementalMerkle { /** * @dev A complete `bytes32` Merkle tree. * * The `sides` and `zero` arrays are set to have a length equal to the depth of the tree during setup. * * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and * lead to unexpected behavior. * * NOTE: The `root` and the updates history is not stored within the tree. Consider using a secondary structure to * store a list of historical roots from the values returned from {setup} and {push} (e.g. a mapping, {BitMaps} or * {Checkpoints}). * * WARNING: Updating any of the tree's parameters after the first insertion will result in a corrupted tree. */ struct Bytes32PushTree { uint256 _nextLeafIndex; bytes32[] _sides; bytes32[] _zeros; } /** * @dev Initialize a {Bytes32PushTree} using {Hashes-Keccak256} to hash internal nodes. * The capacity of the tree (i.e. number of leaves) is set to `2**levels`. * * IMPORTANT: The zero value should be carefully chosen since it will be stored in the tree representing * empty leaves. It should be a value that is not expected to be part of the tree. */ function setup(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) { self._nextLeafIndex = 0; self._zeros.push(zero); self._sides.push(bytes32(0)); return bytes32(0); } /** * @dev Resets the tree to a blank state. * Calling this function on MerkleTree that was already setup and used will reset it to a blank state. * @param zero The value that represents an empty leaf. * @return initialRoot The initial root of the tree. */ function reset(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) { self._nextLeafIndex = 0; uint256 length = self._zeros.length; for (uint256 i = length; 0 < i; --i) { self._zeros.pop(); } length = self._sides.length; for (uint256 i = length; 0 < i; --i) { self._sides.pop(); } self._zeros.push(zero); self._sides.push(bytes32(0)); return bytes32(0); } /** * @dev Insert a new leaf in the tree, and compute the new root. Returns the position of the inserted leaf in the * tree, and the resulting root. * * Hashing the leaf before calling this function is recommended as a protection against * second pre-image attacks. */ function push(Bytes32PushTree storage self, bytes32 leaf) internal returns (uint256 index, bytes32 newRoot) { // Cache read uint256 levels = self._zeros.length - 1; // Get leaf index // solhint-disable-next-line gas-increment-by-one index = self._nextLeafIndex++; // Check if tree is full. if (index == 1 << levels) { bytes32 zero = self._zeros[levels]; bytes32 newZero = Merkle.efficientHash(zero, zero); self._zeros.push(newZero); self._sides.push(bytes32(0)); ++levels; } // Rebuild branch from leaf to root uint256 currentIndex = index; bytes32 currentLevelHash = leaf; bool updatedSides = false; for (uint32 i = 0; i < levels; ++i) { // Reaching the parent node, is currentLevelHash the left child? bool isLeft = currentIndex % 2 == 0; // If so, next time we will come from the right, so we need to save it if (isLeft && !updatedSides) { Arrays.unsafeAccess(self._sides, i).value = currentLevelHash; updatedSides = true; } // Compute the current node hash by using the hash function // with either its sibling (side) or the zero value for that level. currentLevelHash = Merkle.efficientHash( isLeft ? currentLevelHash : Arrays.unsafeAccess(self._sides, i).value, isLeft ? Arrays.unsafeAccess(self._zeros, i).value : currentLevelHash ); // Update node index currentIndex >>= 1; } Arrays.unsafeAccess(self._sides, levels).value = currentLevelHash; return (index, currentLevelHash); } /** * @dev Tree's root. */ function root(Bytes32PushTree storage self) internal view returns (bytes32) { return Arrays.unsafeAccess(self._sides, self._sides.length - 1).value; } /** * @dev Tree's height (does not include the root node). */ function height(Bytes32PushTree storage self) internal view returns (uint256) { return self._sides.length - 1; } }
// SPDX-License-Identifier: MIT // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. pragma solidity ^0.8.21; import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol"; import {MerklePathEmpty, MerklePathOutOfBounds, MerkleIndexOutOfBounds, MerklePathLengthMismatch, MerkleNothingToProve, MerkleIndexOrHeightMismatch} from "../../common/L1ContractErrors.sol"; /// @author Matter Labs /// @custom:security-contact [email protected] library Merkle { using UncheckedMath for uint256; /// @dev Calculate Merkle root by the provided Merkle proof. /// NOTE: When using this function, check that the _path length is equal to the tree height to prevent shorter/longer paths attack /// however, for chains settling on GW the proof includes the GW proof, so the path increases. See Mailbox for more details. /// @param _path Merkle path from the leaf to the root /// @param _index Leaf index in the tree /// @param _itemHash Hash of leaf content /// @return The Merkle root function calculateRoot( bytes32[] calldata _path, uint256 _index, bytes32 _itemHash ) internal pure returns (bytes32) { uint256 pathLength = _path.length; _validatePathLengthForSingleProof(_index, pathLength); bytes32 currentHash = _itemHash; for (uint256 i; i < pathLength; i = i.uncheckedInc()) { currentHash = (_index % 2 == 0) ? efficientHash(currentHash, _path[i]) : efficientHash(_path[i], currentHash); _index /= 2; } return currentHash; } /// @dev Calculate Merkle root by the provided Merkle proof. /// @dev NOTE: When using this function, check that the _path length is appropriate to prevent shorter/longer paths attack /// @param _path Merkle path from the leaf to the root /// @param _index Leaf index in the tree. /// @dev NOTE the tree can be joined. In this case the second tree's leaves indexes increase by the number of leaves in the first tree. /// @param _itemHash Hash of leaf content /// @return The Merkle root function calculateRootMemory( bytes32[] memory _path, uint256 _index, bytes32 _itemHash ) internal pure returns (bytes32) { uint256 pathLength = _path.length; _validatePathLengthForSingleProof(_index, pathLength); bytes32 currentHash = _itemHash; for (uint256 i; i < pathLength; i = i.uncheckedInc()) { currentHash = (_index % 2 == 0) ? efficientHash(currentHash, _path[i]) : efficientHash(_path[i], currentHash); _index /= 2; } return currentHash; } /// @dev Calculate Merkle root by the provided Merkle proof for a range of elements /// NOTE: When using this function, check that the _startPath and _endPath lengths are equal to the tree height to prevent shorter/longer paths attack /// @param _startPath Merkle path from the first element of the range to the root /// @param _endPath Merkle path from the last element of the range to the root /// @param _startIndex Index of the first element of the range in the tree /// @param _itemHashes Hashes of the elements in the range /// @return The Merkle root function calculateRootPaths( bytes32[] memory _startPath, bytes32[] memory _endPath, uint256 _startIndex, bytes32[] memory _itemHashes ) internal pure returns (bytes32) { uint256 pathLength = _startPath.length; if (pathLength != _endPath.length) { revert MerklePathLengthMismatch(pathLength, _endPath.length); } if (pathLength >= 256) { revert MerklePathOutOfBounds(); } uint256 levelLen = _itemHashes.length; // Edge case: we want to be able to prove an element in a single-node tree. if (pathLength == 0 && (_startIndex != 0 || levelLen != 1)) { revert MerklePathEmpty(); } if (levelLen == 0) { revert MerkleNothingToProve(); } if (_startIndex + levelLen > (1 << pathLength)) { revert MerkleIndexOrHeightMismatch(); } bytes32[] memory itemHashes = _itemHashes; for (uint256 level; level < pathLength; level = level.uncheckedInc()) { uint256 parity = _startIndex % 2; // We get an extra element on the next level if on the current level elements either // start on an odd index (`parity == 1`) or end on an even index (`levelLen % 2 == 1`) uint256 nextLevelLen = levelLen / 2 + (parity | (levelLen % 2)); for (uint256 i; i < nextLevelLen; i = i.uncheckedInc()) { bytes32 lhs = (i == 0 && parity == 1) ? _startPath[level] : itemHashes[2 * i - parity]; bytes32 rhs = (i == nextLevelLen - 1 && (levelLen - parity) % 2 == 1) ? _endPath[level] : itemHashes[2 * i + 1 - parity]; itemHashes[i] = efficientHash(lhs, rhs); } levelLen = nextLevelLen; _startIndex /= 2; } return itemHashes[0]; } /// @dev Keccak hash of the concatenation of two 32-byte words function efficientHash(bytes32 _lhs, bytes32 _rhs) internal pure returns (bytes32 result) { assembly { mstore(0x00, _lhs) mstore(0x20, _rhs) result := keccak256(0x00, 0x40) } } function _validatePathLengthForSingleProof(uint256 _index, uint256 _pathLength) private pure { if (_pathLength >= 256) { revert MerklePathOutOfBounds(); } if (_index >= (1 << _pathLength)) { revert MerkleIndexOutOfBounds(); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; // 0x2e89f517 error L1DAValidatorAddressIsZero(); // 0x944bc075 error L2DAValidatorAddressIsZero(); // 0xca1c3cbc error AlreadyMigrated(); // 0xf05c64c6 error NotChainAdmin(address prevMsgSender, address admin); // 0xc59d372c error ProtocolVersionNotUpToDate(uint256 currentProtocolVersion, uint256 protocolVersion); // 0xedae13f3 error ExecutedIsNotConsistentWithVerified(uint256 batchesExecuted, uint256 batchesVerified); // 0x712d02d2 error VerifiedIsNotConsistentWithCommitted(uint256 batchesVerified, uint256 batchesCommitted); // 0xfb1a3b59 error InvalidNumberOfBatchHashes(uint256 batchHashesLength, uint256 expected); // 0xa840274f error PriorityQueueNotReady(); // 0x79274f04 error UnsupportedProofMetadataVersion(uint256 metadataVersion); // 0xa969e486 error LocalRootIsZero(); // 0xbdaf7d42 error LocalRootMustBeZero(); // 0xd0266e26 error NotSettlementLayer(); // 0x32ddf9a2 error NotHyperchain(); // 0x2237c426 error MismatchL2DAValidator(); // 0x2c01a4af error MismatchNumberOfLayer1Txs(uint256 numberOfLayer1Txs, uint256 expectedLength); // 0xfbd630b8 error InvalidBatchesDataLength(uint256 batchesDataLength, uint256 priorityOpsDataLength); // 0x55008233 error PriorityOpsDataLeftPathLengthIsNotZero(); // 0x8be936a9 error PriorityOpsDataRightPathLengthIsNotZero(); // 0x99d44739 error PriorityOpsDataItemHashesLengthIsNotZero(); // 0x885ae069 error OperatorDAInputTooSmall(uint256 operatorDAInputLength, uint256 minAllowedLength); // 0xbeb96791 error InvalidNumberOfBlobs(uint256 blobsProvided, uint256 maxBlobsSupported); // 0xd2531c15 error InvalidL2DAOutputHash(bytes32 l2DAValidatorOutputHash); // 0x04e05fd1 error OnlyOneBlobWithCalldataAllowed(); // 0x2dc9747d error PubdataInputTooSmall(uint256 pubdataInputLength, uint256 totalBlobsCommitmentSize); // 0x9044dff9 error PubdataLengthTooBig(uint256 pubdataLength, uint256 totalBlobSizeBytes); // 0x5513177c error InvalidPubdataHash(bytes32 fullPubdataHash, bytes32 providedPubdataHash); // 0x5717f940 error InvalidPubdataSource(uint8 pubdataSource); // 0x125d99b0 error BlobHashBlobCommitmentMismatchValue(); // 0x7fbff2dd error L1DAValidatorInvalidSender(address msgSender); // 0xc06789fa error InvalidCommitment(); // 0xc866ff2c error InitialForceDeploymentMismatch(bytes32 forceDeploymentHash, bytes32 initialForceDeploymentHash); // 0xb325f767 error AdminZero(); // 0x681150be error OutdatedProtocolVersion(uint256 protocolVersion, uint256 currentProtocolVersion); // 0x87470e36 error NotL1(uint256 blockChainId); // 0x90f67ecf error InvalidStartIndex(uint256 treeStartIndex, uint256 commitmentStartIndex); // 0x0f67bc0a error InvalidUnprocessedIndex(uint256 treeUnprocessedIndex, uint256 commitmentUnprocessedIndex); // 0x30043900 error InvalidNextLeafIndex(uint256 treeNextLeafIndex, uint256 commitmentNextLeafIndex); // 0xf9ba09d6 error NotAllBatchesExecuted(); // 0x9b53b101 error NotHistoricalRoot(); // 0xc02d3ee3 error ContractNotDeployed(); // 0xd7b2559b error NotMigrated(); // 0x52595598 error ValL1DAWrongInputLength(uint256 inputLength, uint256 expectedLength);
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Arrays.sol) pragma solidity ^0.8.0; import "./StorageSlot.sol"; import "./math/Math.sol"; /** * @dev Collection of functions related to array types. */ library Arrays { using StorageSlot for bytes32; /** * @dev Searches a sorted `array` and returns the first index that contains * a value greater or equal to `element`. If no such index exists (i.e. all * values in the array are strictly less than `element`), the array length is * returned. Time complexity O(log n). * * `array` is expected to be sorted in ascending order, and to contain no * repeated elements. */ function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { if (array.length == 0) { return 0; } uint256 low = 0; uint256 high = array.length; while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds down (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) { bytes32 slot; // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr` // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays. /// @solidity memory-safe-assembly assembly { mstore(0, arr.slot) slot := add(keccak256(0, 0x20), pos) } return slot.getAddressSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) { bytes32 slot; // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr` // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays. /// @solidity memory-safe-assembly assembly { mstore(0, arr.slot) slot := add(keccak256(0, 0x20), pos) } return slot.getBytes32Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) { bytes32 slot; // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr` // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays. /// @solidity memory-safe-assembly assembly { mstore(0, arr.slot) slot := add(keccak256(0, 0x20), pos) } return slot.getUint256Slot(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
{ "remappings": [ "@ensdomains/=node_modules/@ensdomains/", "ds-test/=lib/forge-std/lib/ds-test/src/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std/=lib/forge-std/src/", "hardhat/=node_modules/hardhat/", "murky/=lib/murky/src/", "foundry-test/=test/foundry/", "l2-contracts/=../l2-contracts/contracts/", "@openzeppelin/contracts-v4/=lib/openzeppelin-contracts-v4/contracts/", "@openzeppelin/contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/contracts/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable-v4/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/", "openzeppelin-contracts-v4/=lib/openzeppelin-contracts-v4/", "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"uint256","name":"_l1ChainId","type":"uint256"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_maxNumberOfZKChains","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"blockChainId","type":"uint256"}],"name":"AlreadyCurrentSL","type":"error"},{"inputs":[{"internalType":"bytes32","name":"assetId","type":"bytes32"}],"name":"AssetHandlerNotRegistered","type":"error"},{"inputs":[],"name":"AssetIdAlreadyRegistered","type":"error"},{"inputs":[{"internalType":"bytes32","name":"assetId","type":"bytes32"}],"name":"AssetIdNotSupported","type":"error"},{"inputs":[],"name":"BridgeHubAlreadyRegistered","type":"error"},{"inputs":[],"name":"CTMAlreadyRegistered","type":"error"},{"inputs":[],"name":"CTMNotRegistered","type":"error"},{"inputs":[],"name":"ChainIdAlreadyExists","type":"error"},{"inputs":[],"name":"ChainIdAlreadyPresent","type":"error"},{"inputs":[],"name":"ChainIdCantBeCurrentChain","type":"error"},{"inputs":[],"name":"ChainIdMismatch","type":"error"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"ChainIdNotRegistered","type":"error"},{"inputs":[],"name":"ChainIdTooBig","type":"error"},{"inputs":[],"name":"ChainNotLegacy","type":"error"},{"inputs":[],"name":"ChainNotPresentInCTM","type":"error"},{"inputs":[],"name":"EmptyAssetId","type":"error"},{"inputs":[],"name":"HyperchainNotRegistered","type":"error"},{"inputs":[{"internalType":"address","name":"bridgehub","type":"address"}],"name":"IncorrectBridgeHubAddress","type":"error"},{"inputs":[{"internalType":"bytes32","name":"assetId","type":"bytes32"},{"internalType":"bytes32","name":"assetIdFromChainId","type":"bytes32"}],"name":"IncorrectChainAssetId","type":"error"},{"inputs":[{"internalType":"address","name":"prevMsgSender","type":"address"},{"internalType":"address","name":"chainAdmin","type":"address"}],"name":"IncorrectSender","type":"error"},{"inputs":[],"name":"MigrationPaused","type":"error"},{"inputs":[{"internalType":"uint256","name":"expectedMsgValue","type":"uint256"},{"internalType":"uint256","name":"providedMsgValue","type":"uint256"}],"name":"MsgValueMismatch","type":"error"},{"inputs":[{"internalType":"bytes32","name":"assetId","type":"bytes32"}],"name":"NoCTMForAssetId","type":"error"},{"inputs":[],"name":"NonEmptyMsgValue","type":"error"},{"inputs":[{"internalType":"address","name":"msgSender","type":"address"},{"internalType":"address","name":"sharedBridge","type":"address"}],"name":"NotAssetRouter","type":"error"},{"inputs":[{"internalType":"uint256","name":"settlementLayerChainId","type":"uint256"},{"internalType":"uint256","name":"blockChainId","type":"uint256"}],"name":"NotCurrentSL","type":"error"},{"inputs":[],"name":"NotInGatewayMode","type":"error"},{"inputs":[],"name":"NotInitializedReentrancyGuard","type":"error"},{"inputs":[{"internalType":"uint256","name":"l1ChainId","type":"uint256"},{"internalType":"uint256","name":"blockChainId","type":"uint256"}],"name":"NotL1","type":"error"},{"inputs":[{"internalType":"address","name":"msgSender","type":"address"},{"internalType":"address","name":"settlementLayerRelaySender","type":"address"}],"name":"NotRelayedSender","type":"error"},{"inputs":[],"name":"Reentrancy","type":"error"},{"inputs":[],"name":"SLNotWhitelisted","type":"error"},{"inputs":[{"internalType":"address","name":"secondBridgeAddress","type":"address"},{"internalType":"address","name":"minSecondBridgeAddress","type":"address"}],"name":"SecondBridgeAddressTooLow","type":"error"},{"inputs":[],"name":"SettlementLayersMustSettleOnL1","type":"error"},{"inputs":[],"name":"SharedBridgeNotSet","type":"error"},{"inputs":[],"name":"SlotOccupied","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"Unauthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"expectedMagicValue","type":"uint256"},{"internalType":"uint256","name":"providedMagicValue","type":"uint256"}],"name":"WrongMagicValue","type":"error"},{"inputs":[],"name":"ZKChainLimitReached","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroChainId","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"assetInfo","type":"bytes32"},{"indexed":true,"internalType":"address","name":"_assetAddress","type":"address"},{"indexed":true,"internalType":"bytes32","name":"additionalData","type":"bytes32"},{"indexed":false,"internalType":"address","name":"sender","type":"address"}],"name":"AssetRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"assetId","type":"bytes32"}],"name":"BaseTokenAssetIdRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"assetId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BridgeBurn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"assetId","type":"bytes32"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BridgeMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"chainTypeManager","type":"address"}],"name":"ChainTypeManagerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"chainTypeManager","type":"address"}],"name":"ChainTypeManagerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"assetId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"zkChain","type":"address"}],"name":"MigrationFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"assetId","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"settlementLayerChainId","type":"uint256"}],"name":"MigrationStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"}],"name":"NewAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":false,"internalType":"address","name":"chainTypeManager","type":"address"},{"indexed":true,"internalType":"address","name":"chainGovernance","type":"address"}],"name":"NewChain","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldPendingAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newPendingAdmin","type":"address"}],"name":"NewPendingAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"chainId","type":"uint256"},{"indexed":true,"internalType":"bool","name":"isWhitelisted","type":"bool"}],"name":"SettlementLayerRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"L1_CHAIN_ID","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_NUMBER_OF_ZK_CHAINS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"__DEPRECATED_baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"baseToken","type":"address"}],"name":"__DEPRECATED_tokenIsRegistered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_chainTypeManager","type":"address"}],"name":"addChainTypeManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_baseTokenAssetId","type":"bytes32"}],"name":"addTokenAssetId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"baseTokenAssetId","type":"bytes32"}],"name":"assetIdIsRegistered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assetRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"baseTokenAssetId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_settlementChainId","type":"uint256"},{"internalType":"uint256","name":"_l2MsgValue","type":"uint256"},{"internalType":"bytes32","name":"_assetId","type":"bytes32"},{"internalType":"address","name":"_originalCaller","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"bridgeBurn","outputs":[{"internalType":"bytes","name":"bridgehubMintData","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes32","name":"_assetId","type":"bytes32"},{"internalType":"bytes","name":"_bridgehubMintData","type":"bytes"}],"name":"bridgeMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes32","name":"_assetId","type":"bytes32"},{"internalType":"address","name":"_depositSender","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"bridgeRecoverFailedTransfer","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"chainTypeManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"chainTypeManager","type":"address"}],"name":"chainTypeManagerIsRegistered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"address","name":"_chainTypeManager","type":"address"},{"internalType":"bytes32","name":"_baseTokenAssetId","type":"bytes32"},{"internalType":"uint256","name":"_salt","type":"uint256"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"bytes","name":"_initData","type":"bytes"},{"internalType":"bytes[]","name":"_factoryDeps","type":"bytes[]"}],"name":"createNewChain","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"ctmAddress","type":"address"}],"name":"ctmAssetIdFromAddress","outputs":[{"internalType":"bytes32","name":"ctmAssetId","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"ctmAssetIdFromChainId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"ctmAssetId","type":"bytes32"}],"name":"ctmAssetIdToAddress","outputs":[{"internalType":"address","name":"ctmAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"bytes32","name":"_canonicalTxHash","type":"bytes32"},{"internalType":"uint64","name":"_expirationTimestamp","type":"uint64"}],"name":"forwardTransactionOnGateway","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAllZKChainChainIDs","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllZKChains","outputs":[{"internalType":"address[]","name":"chainAddresses","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"getHyperchain","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"getZKChain","outputs":[{"internalType":"address","name":"chainAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initializeV2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"l1CtmDeployer","outputs":[{"internalType":"contract ICTMDeploymentTracker","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_gasPrice","type":"uint256"},{"internalType":"uint256","name":"_l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"_l2GasPerPubdataByteLimit","type":"uint256"}],"name":"l2TransactionBaseCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"messageRoot","outputs":[{"internalType":"contract IMessageRoot","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"migrationPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseMigration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"bytes32","name":"_l2TxHash","type":"bytes32"},{"internalType":"uint256","name":"_l2BatchNumber","type":"uint256"},{"internalType":"uint256","name":"_l2MessageIndex","type":"uint256"},{"internalType":"uint16","name":"_l2TxNumberInBatch","type":"uint16"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"enum TxStatus","name":"_status","type":"uint8"}],"name":"proveL1ToL2TransactionStatus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_batchNumber","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"components":[{"internalType":"uint8","name":"l2ShardId","type":"uint8"},{"internalType":"bool","name":"isService","type":"bool"},{"internalType":"uint16","name":"txNumberInBatch","type":"uint16"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"bytes32","name":"key","type":"bytes32"},{"internalType":"bytes32","name":"value","type":"bytes32"}],"internalType":"struct L2Log","name":"_log","type":"tuple"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"proveL2LogInclusion","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_batchNumber","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"components":[{"internalType":"uint16","name":"txNumberInBatch","type":"uint16"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct L2Message","name":"_message","type":"tuple"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"proveL2MessageInclusion","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"address","name":"_zkChain","type":"address"}],"name":"registerAlreadyDeployedZKChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"registerLegacyChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newSettlementLayerChainId","type":"uint256"},{"internalType":"bool","name":"_isWhitelisted","type":"bool"}],"name":"registerSettlementLayer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_chainTypeManager","type":"address"}],"name":"removeChainTypeManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"uint256","name":"mintValue","type":"uint256"},{"internalType":"address","name":"l2Contract","type":"address"},{"internalType":"uint256","name":"l2Value","type":"uint256"},{"internalType":"bytes","name":"l2Calldata","type":"bytes"},{"internalType":"uint256","name":"l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"l2GasPerPubdataByteLimit","type":"uint256"},{"internalType":"bytes[]","name":"factoryDeps","type":"bytes[]"},{"internalType":"address","name":"refundRecipient","type":"address"}],"internalType":"struct L2TransactionRequestDirect","name":"_request","type":"tuple"}],"name":"requestL2TransactionDirect","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"uint256","name":"mintValue","type":"uint256"},{"internalType":"uint256","name":"l2Value","type":"uint256"},{"internalType":"uint256","name":"l2GasLimit","type":"uint256"},{"internalType":"uint256","name":"l2GasPerPubdataByteLimit","type":"uint256"},{"internalType":"address","name":"refundRecipient","type":"address"},{"internalType":"address","name":"secondBridgeAddress","type":"address"},{"internalType":"uint256","name":"secondBridgeValue","type":"uint256"},{"internalType":"bytes","name":"secondBridgeCalldata","type":"bytes"}],"internalType":"struct L2TransactionRequestTwoBridgesOuter","name":"_request","type":"tuple"}],"name":"requestL2TransactionTwoBridges","outputs":[{"internalType":"bytes32","name":"canonicalTxHash","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_assetRouter","type":"address"},{"internalType":"contract ICTMDeploymentTracker","name":"_l1CtmDeployer","type":"address"},{"internalType":"contract IMessageRoot","name":"_messageRoot","type":"address"}],"name":"setAddresses","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_additionalData","type":"bytes32"},{"internalType":"address","name":"_assetAddress","type":"address"}],"name":"setCTMAssetAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newPendingAdmin","type":"address"}],"name":"setPendingAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"settlementLayer","outputs":[{"internalType":"uint256","name":"activeSettlementLayerChainId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sharedBridge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpauseMigration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"chainId","type":"uint256"}],"name":"whitelistedSettlementLayers","outputs":[{"internalType":"bool","name":"isWhitelistedSettlementLayer","type":"bool"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x608060405260043610610366575f3560e01c80638456cb59116101c8578063d52471c1116100fd578063e6d9923b1161009d578063f2fde38b1161006d578063f2fde38b14610a4d578063f7c7eb9214610a6c578063f851a44014610a80578063ff5a62a114610a9f575f80fd5b8063e6d9923b146109b3578063e9420f8c146109d2578063eced0bf014610a00578063f113c88b14610a2e575f80fd5b8063e0ab6368116100d8578063e0ab63681461091e578063e30c39781461094c578063e52db4ca14610969578063e680c4c114610994575f80fd5b8063d52471c1146108cd578063dc8e4b26146108e0578063dead6f7f146108ff575f80fd5b8063b5662c5d11610168578063c2e9029311610143578063c2e902931461085d578063c4d66de814610870578063cbe836121461088f578063d4b9f4fa146108ae575f80fd5b8063b5662c5d146107f1578063b93c936614610810578063bc0aac101461083e575f80fd5b806399c16d1a116101a357806399c16d1a1461076b5780639d5bd3da1461078a578063ac700e63146107be578063b292f5f1146107d2575f80fd5b80638456cb59146107075780638da5cb5b1461071b5780638f8d37a814610738575f80fd5b806349707f311161029e578063671a71311161023e57806370fccb521161021957806370fccb5214610695578063715018a6146106c057806371623274146106d457806379ba5097146106f3575f80fd5b8063671a71311461062957806368b8d33114610654578063699b0fb914610675575f80fd5b806359ec65a21161027957806359ec65a2146105ab5780635c975abb146105ca5780635cd8a76b146105e15780635d83b6da146105f5575f80fd5b806349707f311461054c5780634dd18bf51461056d578063524c0cfa1461058c575f80fd5b80632f90b1841161030957806336ba0355116102e457806336ba0355146104e957806338720778146104fc5780633885a750146105195780633f4ba83a14610538575f80fd5b80632f90b18414610478578063332b96dc146104ab578063363bf964146104ca575f80fd5b806324358c611161034457806324358c61146103f057806324fd57fb1461041d5780632a641114146104305780632dbcf55f14610459575f80fd5b806307621f841461036a5780630e18b681146103bb5780631c50cfea146103d1575b5f80fd5b348015610375575f80fd5b5061039e610384366004613b94565b60d66020525f90815260409020546001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b3480156103c6575f80fd5b506103cf610abe565b005b3480156103dc575f80fd5b506103cf6103eb366004613b94565b610b8c565b3480156103fb575f80fd5b5061040f61040a366004613b94565b610c43565b6040519081526020016103b2565b61040f61042b366004613bc2565b610c98565b34801561043b575f80fd5b5060db546104499060ff1681565b60405190151581526020016103b2565b348015610464575f80fd5b506103cf610473366004613c17565b61115a565b348015610483575f80fd5b5061040f7f0000000000000000000000000000000000000000000000000000000000aa36a781565b3480156104b6575f80fd5b506103cf6104c5366004613c45565b6112e8565b3480156104d5575f80fd5b506103cf6104e4366004613c60565b611397565b6103cf6104f7366004613ce5565b6113de565b348015610507575f80fd5b5060c9546001600160a01b031661039e565b348015610524575f80fd5b506103cf610533366004613b94565b611709565b348015610543575f80fd5b506103cf611948565b348015610557575f80fd5b5061056061195a565b6040516103b29190613d33565b348015610578575f80fd5b506103cf610587366004613c45565b611a20565b348015610597575f80fd5b506103cf6105a6366004613d7f565b611ade565b3480156105b6575f80fd5b5061039e6105c5366004613b94565b611be7565b3480156105d5575f80fd5b5060975460ff16610449565b3480156105ec575f80fd5b506103cf611cff565b348015610600575f80fd5b5061039e61060f366004613b94565b60cd6020525f90815260409020546001600160a01b031681565b348015610634575f80fd5b5061040f610643366004613b94565b60d86020525f908152604090205481565b34801561065f575f80fd5b50610668611e72565b6040516103b29190613db5565b610688610683366004613dec565b611e83565b6040516103b29190613ea6565b3480156106a0575f80fd5b5061040f6106af366004613c45565b60d76020525f908152604090205481565b3480156106cb575f80fd5b506103cf61234c565b3480156106df575f80fd5b5061040f6106ee366004613eb8565b61235d565b3480156106fe575f80fd5b506103cf6123ec565b348015610712575f80fd5b506103cf612463565b348015610726575f80fd5b506033546001600160a01b031661039e565b348015610743575f80fd5b5061040f7f000000000000000000000000000000000000000000000000000000000000006481565b348015610776575f80fd5b50610449610785366004613f27565b612473565b348015610795575f80fd5b5061039e6107a4366004613b94565b60cc6020525f90815260409020546001600160a01b031681565b3480156107c9575f80fd5b506103cf612502565b3480156107dd575f80fd5b506104496107ec366004613fad565b612519565b3480156107fc575f80fd5b506103cf61080b366004613c17565b6125ae565b34801561081b575f80fd5b5061044961082a366004613c45565b60ca6020525f908152604090205460ff1681565b348015610849575f80fd5b5060c95461039e906001600160a01b031681565b6103cf61086b366004614037565b6129a4565b34801561087b575f80fd5b506103cf61088a366004613c45565b612b78565b34801561089a575f80fd5b5060d55461039e906001600160a01b031681565b3480156108b9575f80fd5b5060d35461039e906001600160a01b031681565b61040f6108db366004613bc2565b612bf9565b3480156108eb575f80fd5b506103cf6108fa3660046140a8565b612ec8565b34801561090a575f80fd5b5061039e610919366004613b94565b612fb0565b348015610929575f80fd5b50610449610938366004613b94565b60da6020525f908152604090205460ff1681565b348015610957575f80fd5b506065546001600160a01b031661039e565b348015610974575f80fd5b5061040f610983366004613b94565b60d46020525f908152604090205481565b34801561099f575f80fd5b5061039e6109ae366004613b94565b612fc0565b3480156109be575f80fd5b506104496109cd3660046140cb565b612fd3565b3480156109dd575f80fd5b506104496109ec366004613b94565b60d96020525f908152604090205460ff1681565b348015610a0b575f80fd5b50610449610a1a366004613c45565b60cb6020525f908152604090205460ff1681565b348015610a39575f80fd5b5061040f610a48366004614131565b613017565b348015610a58575f80fd5b506103cf610a67366004613c45565b6132b2565b348015610a77575f80fd5b506103cf613323565b348015610a8b575f80fd5b5060ce5461039e906001600160a01b031681565b348015610aaa575f80fd5b506103cf610ab9366004613c45565b613337565b60cf546001600160a01b0316338114610af15760405163472511eb60e11b81523360048201526024015b60405180910390fd5b60ce80546001600160a01b038381166001600160a01b0319808416821790945560cf80549094169093556040519116915f917fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a9908390a3816001600160a01b0316816001600160a01b03167ff9ffabca9c8276e99321725bcb43fb076a6c66a54b7f21c4e8146d8519b417dc60405160405180910390a35050565b60ce546001600160a01b03163314801590610bb257506033546001600160a01b03163314155b15610bd25760405163472511eb60e11b8152336004820152602401610ae8565b5f81815260da602052604090205460ff1615610c0157604051631fd233c560e31b815260040160405180910390fd5b5f81815260da6020526040808220805460ff191660011790555182917f3df150949161462acf3be30521d7da9e533b247327a254e55dd01875897a6df391a250565b5f81815260cc60205260408120546001600160a01b031680610c7b576040516323f3c35760e01b815260048101849052602401610ae8565b6001600160a01b03165f90815260d7602052604090205492915050565b5f80516020614c56833981519152545f90808203610cc95760405163dd7e362160e01b815260040160405180910390fd5b60018114610cea5760405163558a1e0360e11b815260040160405180910390fd5b60025f80516020614c5683398151915255610d036133ea565b467f0000000000000000000000000000000000000000000000000000000000aa36a714610d6b5760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b61ffff610d7e60e0850160c08601613c45565b6001600160a01b031611610dc957610d9c60e0840160c08501613c45565b60405163b78dbaa760e01b81526001600160a01b03909116600482015261ffff6024820152604401610ae8565b82355f90815260d46020526040812054907f6337a96bd2cd359fa0bae3bbedfca736753213c95037ae158c5fa7c048ae21128203610e5957610e1360e086013560208701356141f0565b3414610e4e57610e2b60e086013560208701356141f0565b604051634a09443160e01b81526004810191909152346024820152604401610ae8565b506020840135610e8c565b8460e001353414610e8957604051634a09443160e01b815260e08601356004820152346024820152604401610ae8565b505f5b60c9546040516303121e5160e61b81528635600482015260248101849052336044820152602087013560648201526001600160a01b039091169063c48794409083906084015f604051808303818588803b158015610ee8575f80fd5b505af1158015610efa573d5f803e3d5ffd5b505050505050505f8360c0016020810190610f159190613c45565b6001600160a01b031663ca408c2360e08601358635336040890135610f3e6101008b018b614203565b6040518763ffffffff1660e01b8152600401610f5e95949392919061426d565b5f6040518083038185885af1158015610f79573d5f803e3d5ffd5b50505050506040513d5f823e601f3d908101601f19168201604052610fa191908101906143c2565b9050610fce60017fa175e001c0e5684bc26302c2f9a55aec9f3936fe2aef558034003ef4da7fc77e6144de565b8151146110245761100060017fa175e001c0e5684bc26302c2f9a55aec9f3936fe2aef558034003ef4da7fc77e6144de565b81516040516315e8e42960e01b815260048101929092526024820152604401610ae8565b6110c5843561103960c0870160a08801613c45565b6040805161012081019091528061105660e08a0160c08b01613c45565b6001600160a01b0316815260200185602001516001600160a01b031681526020018860200135815260200188604001358152602001856040015181526020018860600135815260200188608001358152602001856060015181526020015f6001600160a01b0316815250613430565b92506110d760e0850160c08601613c45565b6080820151604051638eb7db5760e01b8152863560048201526024810191909152604481018590526001600160a01b039190911690638eb7db57906064015f604051808303815f87803b15801561112c575f80fd5b505af115801561113e573d5f803e3d5ffd5b505050505060015f80516020614c568339815191525550919050565b5f467f0000000000000000000000000000000000000000000000000000000000aa36a71461119f577311110000000000000000000000000000000011101933016111a1565b335b60d5549091506001600160a01b038083169116146111dd5760405163472511eb60e11b81526001600160a01b0382166004820152602401610ae8565b6001600160a01b0382165f90815260ca602052604090205460ff166112155760405163318c3bcf60e21b815260040160405180910390fd5b604080517f0000000000000000000000000000000000000000000000000000000000aa36a76020808301919091526001600160a01b03841682840152606080830187905283518084039091018152608090920190925280519101205f905f81815260d66020908152604080832080546001600160a01b0319166001600160a01b03891690811790915580845260d783529281902084905551338152929350869284917f8f09d7694a9ae17acec5cf132d594d7eee23572f7fe132396ce72b1afbf7ef20910160405180910390a450505050565b6112f06134a5565b6001600160a01b0381166113175760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b0381165f90815260ca602052604090205460ff1661134f5760405163318c3bcf60e21b815260040160405180910390fd5b6001600160a01b0381165f81815260ca6020526040808220805460ff19169055517f4e04a497739580efe78a7ee09cdabe6f6fe90965c683292a519102ce5193b68a9190a250565b61139f6134a5565b60c980546001600160a01b039485166001600160a01b03199182161790915560d580549385169382169390931790925560d38054919093169116179055565b3480156113fe5760405163536ec84b60e01b815260040160405180910390fd5b60c9546001600160a01b0316331461143e5760c954604051630f306a7760e41b81523360048201526001600160a01b039091166024820152604401610ae8565b60db5460ff1615611462576040516303312a4560e41b815260040160405180910390fd5b5f61146f8385018561453e565b5f86815260d660205260409020549091506001600160a01b0316806114aa5760405163ce63ce1760e01b815260048101879052602401610ae8565b81515f90815260d860205260409020544690036114dc57604051632c3efa1360e11b8152466004820152602401610ae8565b81515f90815260d8602090815260408083204690558451835260cc825280832080546001600160a01b0319166001600160a01b03861617905581850180518651855260d484528285205551835260da9091528120805460ff19166001179055825161154690612fc0565b90506001600160a01b038116151580611668578351604080860151905163e8a71ca960e01b81526001600160a01b0386169263e8a71ca99261158a926004016145dc565b6020604051808303815f875af11580156115a6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115ca91906145f4565b91506001600160a01b0382166115f95783516040516323f3c35760e01b81526004810191909152602401610ae8565b835161160690835f6134ff565b60d3548451604051636a67046160e11b81526001600160a01b039092169163d4ce08c29161163a9160040190815260200190565b5f604051808303815f87803b158015611651575f80fd5b505af1158015611663573d5f803e3d5ffd5b505050505b6060840151604051633f42d5dd60e01b81526001600160a01b03841691633f42d5dd9161169a9190859060040161460f565b5f604051808303815f87803b1580156116b1575f80fd5b505af11580156116c3573d5f803e3d5ffd5b505085516040516001600160a01b03861693508b92507fb0cc16029b506b2a262b52711e71db4fcd1cb078bd4bb86c7ba82cd3be2eadd3905f90a4505050505050505050565b467f0000000000000000000000000000000000000000000000000000000000aa36a7146117715760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b5f81815260cc60205260409020546001600160a01b0316806117a657604051635de7210760e01b815260040160405180910390fd5b6117b160d083613564565b156117d2576040516001620aeb3f60e41b0319815260040160405180910390fd5b5f82815260cd60205260409020546001600160a01b03168061180757604051635de7210760e01b815260040160405180910390fd5b5f611812468361356f565b5f85815260d46020908152604080832084905583835260da909152808220805460ff1916600117905551634caa740f60e01b815260048101879052919250906001600160a01b03851690634caa740f90602401602060405180830381865afa158015611880573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118a491906145f4565b90506001600160a01b0381166118cd57604051634bd4ae0760e01b815260040160405180910390fd5b6118d885825f6134ff565b60d354604051636a67046160e11b8152600481018790526001600160a01b039091169063d4ce08c2906024015f604051808303815f87803b15801561191b575f80fd5b505af115801561192d573d5f803e3d5ffd5b5050505f958652505060d86020525050604090912046905550565b6119506134a5565b6119586135c2565b565b60605f61196760d0613614565b905080516001600160401b03811115611982576119826142a5565b6040519080825280602002602001820160405280156119ab578160200160208202803683370190505b5081519092505f5b81811015611a1a576119e88382815181106119d0576119d0614632565b602002602001015160d061362090919063ffffffff16565b8482815181106119fa576119fa614632565b6001600160a01b03909216602092830291909101909101526001016119b3565b50505090565b60ce546001600160a01b03163314801590611a4657506033546001600160a01b03163314155b15611a665760405163472511eb60e11b8152336004820152602401610ae8565b6001600160a01b038116611a8d5760405163d92e233d60e01b815260040160405180910390fd5b60cf80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a9905f90a35050565b3373111111111111111111111111111111111111111114611b2e57604051630515601560e51b81523360048201527311111111111111111111111111111111111111116024820152604401610ae8565b467f0000000000000000000000000000000000000000000000000000000000aa36a703611b6e576040516323923bf160e11b815260040160405180910390fd5b5f611b7a60d085613620565b60405163377327bb60e21b8152600481018590526001600160401b03841660248201529091506001600160a01b0382169063ddcc9eec906044015f604051808303815f87803b158015611bcb575f80fd5b505af1158015611bdd573d5f803e3d5ffd5b5050505050505050565b5f81815260d460205260408082205460c95491516329dcf31960e11b815260048101829052909183916001600160a01b03909116906353b9e63290602401602060405180830381865afa158015611c40573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6491906145f4565b90506001600160a01b038116611c9057604051630c820f2d60e31b815260048101839052602401610ae8565b6040516397bb3ce960e01b8152600481018390526001600160a01b038216906397bb3ce990602401602060405180830381865afa158015611cd3573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cf791906145f4565b949350505050565b5f54610100900460ff1615808015611d1d57505f54600160ff909116105b80611d365750303b158015611d3657505f5460ff166001145b611d995760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608401610ae8565b5f805460ff191660011790558015611dba575f805461ff0019166101001790555b467f0000000000000000000000000000000000000000000000000000000000aa36a714611e225760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b611e2a61362b565b8015611e6f575f805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b6060611e7e60d0613614565b905090565b6060611e8f34876141f0565b8015611eae5760405163536ec84b60e01b815260040160405180910390fd5b60c9546001600160a01b03163314611eee5760c954604051630f306a7760e41b81523360048201526001600160a01b039091166024820152604401610ae8565b60db5460ff1615611f12576040516303312a4560e41b815260040160405180910390fd5b5f88815260d9602052604090205460ff16611f40576040516390c7cbf160e01b815260040160405180910390fd5b5f611f4d84860186614646565b9050611f5b815f0151610c43565b8714611f905786611f6e825f0151610c43565b6040516348857c1d60e01b815260048101929092526024820152604401610ae8565b80515f90815260d860205260409020544614611fda5780515f90815260d860205260409081902054905163606548c160e11b81526004810191909152466024820152604401610ae8565b80515f90815260d8602090815260408083208c90558351835260d990915290205460ff161561201c576040516302181a1360e01b815260040160405180910390fd5b80515f9061202c9060d090613620565b90506001600160a01b0381166120555760405163755c4ad560e11b815260040160405180910390fd5b806001600160a01b0316636e9960c36040518163ffffffff1660e01b8152600401602060405180830381865afa158015612091573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120b591906145f4565b6001600160a01b0316876001600160a01b03161461215a5786816001600160a01b0316636e9960c36040518163ffffffff1660e01b8152600401602060405180830381865afa15801561210a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061212e91906145f4565b60405163f5e39c1f60e01b81526001600160a01b03928316600482015291166024820152604401610ae8565b81515f90815260cc6020908152604080832054855192860151915163f85894c560e01b81526001600160a01b039091169263f85894c59261219d926004016145dc565b5f604051808303815f875af11580156121b8573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526121df91908101906146f0565b90505f826001600160a01b03166364b554ad7f0000000000000000000000000000000000000000000000000000000000aa36a78e146122285761222360d08f613620565b612253565b61225360017f6fec4315a24cdd31bf1c745ab80046dd00c532db52d172866ebaf0e74c0f58926144de565b8b87604001516040518463ffffffff1660e01b815260040161227793929190614721565b5f604051808303815f875af1158015612292573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526122b991908101906146f0565b604080516080810182528651815286515f90815260d46020908152908390205481830152818301869052606082018490529151929350916122fc91839101614755565b60408051601f198184030181529082905286519098508e918d91907fc60eb6d595da5361c68f60aa7c8286b8f73c3a99e9db1818e146c522f512496f905f90a45050505050509695505050505050565b6123546134a5565b6119585f6136a1565b5f8061236a60d087613620565b604051635a3998c760e11b81526004810187905260248101869052604481018590529091506001600160a01b0382169063b473318e90606401602060405180830381865afa1580156123be573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123e291906147a1565b9695505050505050565b60655433906001600160a01b0316811461245a5760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608401610ae8565b611e6f816136a1565b61246b6134a5565b6119586136ba565b5f8061248060d089613620565b60405163e4948f4360e01b81529091506001600160a01b0382169063e4948f43906124b7908a908a908a908a908a90600401614829565b602060405180830381865afa1580156124d2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906124f691906148a0565b98975050505050505050565b61250a6134a5565b60db805460ff19166001179055565b5f8061252660d08b613620565b60405163042901c760e01b81529091506001600160a01b0382169063042901c790612561908c908c908c908c908c908c908c906004016148bb565b602060405180830381865afa15801561257c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125a091906148a0565b9a9950505050505050505050565b6125b66134a5565b467f0000000000000000000000000000000000000000000000000000000000aa36a71461261e5760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b6001600160a01b0381166126455760405163d92e233d60e01b815260040160405180910390fd5b61265060d083613564565b1561266e576040516324591d8960e01b815260040160405180910390fd5b81816001600160a01b0316633408e4706040518163ffffffff1660e01b8152600401602060405180830381865afa1580156126ab573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906126cf91906147a1565b146126ed5760405163a179f8c960e01b815260040160405180910390fd5b5f816001600160a01b031663946ebad16040518163ffffffff1660e01b8152600401602060405180830381865afa15801561272a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061274e91906145f4565b90505f826001600160a01b0316636e9960c36040518163ffffffff1660e01b8152600401602060405180830381865afa15801561278d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127b191906145f4565b90505f836001600160a01b031663960dcf246040518163ffffffff1660e01b8152600401602060405180830381865afa1580156127f0573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061281491906147a1565b90505f846001600160a01b0316633591c1a06040518163ffffffff1660e01b8152600401602060405180830381865afa158015612853573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061287791906145f4565b90506001600160a01b03811630146128ad5760405163374e069360e21b81526001600160a01b0382166004820152602401610ae8565b6128b88683866136f7565b5f86815260cc6020908152604080832080546001600160a01b0319166001600160a01b03891617905560d4825280832085905560d89091529020469055612901868660016134ff565b60d354604051636a67046160e11b8152600481018890526001600160a01b039091169063d4ce08c2906024015f604051808303815f87803b158015612944575f80fd5b505af1158015612956573d5f803e3d5ffd5b50506040516001600160a01b038781168252861692508891507f1e9125bc72db22c58abff6821d7333551967e26454b419ffa958e4cb8ef476009060200160405180910390a3505050505050565b3480156129c45760405163536ec84b60e01b815260040160405180910390fd5b60c9546001600160a01b03163314612a045760c954604051630f306a7760e41b81523360048201526001600160a01b039091166024820152604401610ae8565b467f0000000000000000000000000000000000000000000000000000000000aa36a714612a6c5760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b5f612a7983850185614646565b80515f90815260d8602090815260408083204690558351835260cc82529182902054835191840151925163b784610760e01b81529394506001600160a01b03169263b784610792612ad192918b918b9160040161491a565b5f604051808303815f87803b158015612ae8575f80fd5b505af1158015612afa573d5f803e3d5ffd5b50505050612b0a815f0151612fc0565b6001600160a01b031663b7846107825f0151888885604001516040518563ffffffff1660e01b8152600401612b42949392919061491a565b5f604051808303815f87803b158015612b59575f80fd5b505af1158015612b6b573d5f803e3d5ffd5b5050505050505050505050565b612b8061386a565b467f0000000000000000000000000000000000000000000000000000000000aa36a714612be85760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b612bf1816136a1565b611e6f61362b565b5f80516020614c56833981519152545f90808203612c2a5760405163dd7e362160e01b815260040160405180910390fd5b60018114612c4b5760405163558a1e0360e11b815260040160405180910390fd5b60025f80516020614c5683398151915255612c646133ea565b467f0000000000000000000000000000000000000000000000000000000000aa36a714612ccc5760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b82355f90815260d460205260409020547f6337a96bd2cd359fa0bae3bbedfca736753213c95037ae158c5fa7c048ae21128103612d385783602001353414612d3357604051634a09443160e01b815260208501356004820152346024820152604401610ae8565b612d5f565b3415612d5f57604051634a09443160e01b81525f6004820152346024820152604401610ae8565b60c9546040516303121e5160e61b81528535600482015260248101839052336044820152602086013560648201526001600160a01b039091169063c48794409034906084015f604051808303818588803b158015612dbb575f80fd5b505af1158015612dcd573d5f803e3d5ffd5b50612eb094505086359250612ded91505061012086016101008701613c45565b6040805161012081018252338152906020820190612e119060608a01908a01613c45565b6001600160a01b0316815260208881013590820152606080890135604083015201612e3f6080890189614203565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050509082525060a0880135602082015260c08801356040820152606001612e9960e0890189614946565b612ea29161498b565b81525f602090910152613430565b60015f80516020614c56833981519152559392505050565b612ed06134a5565b467f0000000000000000000000000000000000000000000000000000000000aa36a714612f385760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b5f82815260d860205260409020544614612f65576040516302181a1360e01b815260040160405180910390fd5b5f82815260d96020526040808220805460ff19168415159081179091559051909184917f02629feb109d94b16a367231d248ba81c462f51ce5b984835f150f1c9f49ed259190a35050565b5f612fba82612fc0565b92915050565b5f612fcc60d08361389e565b9392505050565b5f80612fe060d089613620565b60405163131dbfc760e11b81529091506001600160a01b0382169063263b7f8e906124b7908a908a908a908a908a906004016149fa565b60ce545f906001600160a01b0316331480159061303f57506033546001600160a01b03163314155b1561305f5760405163472511eb60e11b8152336004820152602401610ae8565b5f80516020614c56833981519152545f81900361308f5760405163dd7e362160e01b815260040160405180910390fd5b600181146130b05760405163558a1e0360e11b815260040160405180910390fd5b60025f80516020614c56833981519152556130c96133ea565b467f0000000000000000000000000000000000000000000000000000000000aa36a7146131315760405163ecb3444960e01b81527f0000000000000000000000000000000000000000000000000000000000aa36a76004820152466024820152604401610ae8565b61313c8b8a8c6136f7565b5f8b815260cc6020908152604080832080546001600160a01b0319166001600160a01b038f1690811790915560d483528184208d905560d890925280832046905551634463e2e960e11b81526388c7c5d2906131a8908f908e908d908d908d908d908d90600401614a8c565b6020604051808303815f875af11580156131c4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906131e891906145f4565b90506131f68c8260016134ff565b60d354604051636a67046160e11b8152600481018e90526001600160a01b039091169063d4ce08c2906024015f604051808303815f87803b158015613239575f80fd5b505af115801561324b573d5f803e3d5ffd5b50506040516001600160a01b038e811682528b1692508e91507f1e9125bc72db22c58abff6821d7333551967e26454b419ffa958e4cb8ef476009060200160405180910390a3505060015f80516020614c5683398151915255509798975050505050505050565b6132ba6134a5565b606580546001600160a01b0383166001600160a01b031990911681179091556132eb6033546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b61332b6134a5565b60db805460ff19169055565b61333f6134a5565b6001600160a01b0381166133665760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b0381165f90815260ca602052604090205460ff161561339f5760405163ec27343960e01b815260040160405180910390fd5b6001600160a01b0381165f81815260ca6020526040808220805460ff19166001179055517f2eae91be1021e05cc8076387b0182458ae474ae44ee44cc59aefda6ca53c1f429190a250565b60975460ff16156119585760405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b6044820152606401610ae8565b5f8061343c84336138bb565b6001600160a01b03811661010085015290505f61345a60d087613620565b6040516312f43dab60e01b81529091506001600160a01b038216906312f43dab90613489908790600401614b7c565b6020604051808303815f875af11580156123be573d5f803e3d5ffd5b6033546001600160a01b031633146119585760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610ae8565b61350b60d0848461391c565b5080801561354157507f000000000000000000000000000000000000000000000000000000000000006461353f60d0613931565b115b1561355f5760405163300db44160e11b815260040160405180910390fd5b505050565b5f612fcc838361393b565b5f8261357f620100006004614c2e565b6040805160208101939093526001600160a01b03918216908301528316606082015260800160405160208183030381529060405280519060200120905092915050565b6135ca613946565b6097805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b60605f612fcc8361398f565b5f612fcc838361399a565b7f6337a96bd2cd359fa0bae3bbedfca736753213c95037ae158c5fa7c048ae21125f90815260da602090815260408083208054600160ff1991821681179092557f0000000000000000000000000000000000000000000000000000000000aa36a7855260d9909352922080549091169091179055565b606580546001600160a01b0319169055611e6f81613a09565b6136c26133ea565b6097805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586135f73390565b825f0361371757604051633212217560e21b815260040160405180910390fd5b65ffffffffffff83111561373e576040516347b1050360e11b815260040160405180910390fd5b46830361375e576040516338bd0b2b60e11b815260040160405180910390fd5b6001600160a01b0381166137855760405163d92e233d60e01b815260040160405180910390fd5b816137a357604051632d4d012f60e01b815260040160405180910390fd5b6001600160a01b0381165f90815260ca602052604090205460ff166137db5760405163318c3bcf60e21b815260040160405180910390fd5b5f82815260da602052604090205460ff1661380c576040516304a0b7e960e01b815260048101839052602401610ae8565b60c9546001600160a01b03166138355760405163856d5b7760e01b815260040160405180910390fd5b5f83815260cc60205260409020546001600160a01b03161561355f57604051633678918960e11b815260040160405180910390fd5b5f80516020614c56833981519152805460019091558015611e6f5760405163df3a8fdd60e01b815260040160405180910390fd5b5f8080806138ac8686613a5a565b909450925050505b9250929050565b5f6001600160a01b0383166138f4576001600160a01b03821632146138eb5761111161111160901b0182016138ed565b815b9050612fba565b6001600160a01b0383163b156139155761111161111160901b0183016138ed565b5090919050565b5f611cf784846001600160a01b038516613a92565b5f612fba82613aae565b5f612fcc8383613ab8565b60975460ff166119585760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b6044820152606401610ae8565b6060612fba82613acf565b5f818152600283016020526040812054801515806139bd57506139bd848461393b565b612fcc5760405162461bcd60e51b815260206004820152601e60248201527f456e756d657261626c654d61703a206e6f6e6578697374656e74206b657900006044820152606401610ae8565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f818152600283016020526040812054819080613a8757613a7b858561393b565b92505f91506138b49050565b6001925090506138b4565b5f8281526002840160205260408120829055611cf78484613adb565b5f612fba82613ae6565b5f8181526001830160205260408120541515612fcc565b60605f612fcc83613aef565b5f612fcc8383613b48565b5f612fba825490565b6060815f01805480602002602001604051908101604052809291908181526020018280548015613b3c57602002820191905f5260205f20905b815481526020019060010190808311613b28575b50505050509050919050565b5f818152600183016020526040812054613b8d57508154600181810184555f848152602080822090930184905584548482528286019093526040902091909155612fba565b505f612fba565b5f60208284031215613ba4575f80fd5b5035919050565b5f6101208284031215613bbc575f80fd5b50919050565b5f60208284031215613bd2575f80fd5b81356001600160401b03811115613be7575f80fd5b611cf784828501613bab565b6001600160a01b0381168114611e6f575f80fd5b8035613c1281613bf3565b919050565b5f8060408385031215613c28575f80fd5b823591506020830135613c3a81613bf3565b809150509250929050565b5f60208284031215613c55575f80fd5b8135612fcc81613bf3565b5f805f60608486031215613c72575f80fd5b8335613c7d81613bf3565b92506020840135613c8d81613bf3565b91506040840135613c9d81613bf3565b809150509250925092565b5f8083601f840112613cb8575f80fd5b5081356001600160401b03811115613cce575f80fd5b6020830191508360208285010111156138b4575f80fd5b5f805f8060608587031215613cf8575f80fd5b843593506020850135925060408501356001600160401b03811115613d1b575f80fd5b613d2787828801613ca8565b95989497509550505050565b602080825282518282018190525f9190848201906040850190845b81811015613d735783516001600160a01b031683529284019291840191600101613d4e565b50909695505050505050565b5f805f60608486031215613d91575f80fd5b833592506020840135915060408401356001600160401b0381168114613c9d575f80fd5b602080825282518282018190525f9190848201906040850190845b81811015613d7357835183529284019291840191600101613dd0565b5f805f805f8060a08789031215613e01575f80fd5b8635955060208701359450604087013593506060870135613e2181613bf3565b925060808701356001600160401b03811115613e3b575f80fd5b613e4789828a01613ca8565b979a9699509497509295939492505050565b5f5b83811015613e73578181015183820152602001613e5b565b50505f910152565b5f8151808452613e92816020860160208601613e59565b601f01601f19169290920160200192915050565b602081525f612fcc6020830184613e7b565b5f805f8060808587031215613ecb575f80fd5b5050823594602084013594506040840135936060013592509050565b5f8083601f840112613ef7575f80fd5b5081356001600160401b03811115613f0d575f80fd5b6020830191508360208260051b85010111156138b4575f80fd5b5f805f805f8060a08789031215613f3c575f80fd5b86359550602087013594506040870135935060608701356001600160401b0380821115613f67575f80fd5b908801906060828b031215613f7a575f80fd5b90935060808801359080821115613f8f575f80fd5b50613e4789828a01613ee7565b803561ffff81168114613c12575f80fd5b5f805f805f805f8060e0898b031215613fc4575f80fd5b88359750602089013596506040890135955060608901359450613fe960808a01613f9c565b935060a08901356001600160401b03811115614003575f80fd5b61400f8b828c01613ee7565b90945092505060c089013560028110614026575f80fd5b809150509295985092959890939650565b5f805f805f6080868803121561404b575f80fd5b8535945060208601359350604086013561406481613bf3565b925060608601356001600160401b0381111561407e575f80fd5b61408a88828901613ca8565b969995985093965092949392505050565b8015158114611e6f575f80fd5b5f80604083850312156140b9575f80fd5b823591506020830135613c3a8161409b565b5f805f805f808688036101408112156140e2575f80fd5b87359650602088013595506040880135945060c0605f1982011215614105575f80fd5b506060870192506101208701356001600160401b03811115614125575f80fd5b613e4789828a01613ee7565b5f805f805f805f805f60e08a8c031215614149575f80fd5b8935985060208a013561415b81613bf3565b975060408a0135965060608a0135955060808a013561417981613bf3565b945060a08a01356001600160401b0380821115614194575f80fd5b6141a08d838e01613ca8565b909650945060c08c01359150808211156141b8575f80fd5b506141c58c828d01613ee7565b915080935050809150509295985092959850929598565b634e487b7160e01b5f52601160045260245ffd5b80820180821115612fba57612fba6141dc565b5f808335601e19843603018112614218575f80fd5b8301803591506001600160401b03821115614231575f80fd5b6020019150368190038213156138b4575f80fd5b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b85815260018060a01b0385166020820152836040820152608060608201525f61429a608083018486614245565b979650505050505050565b634e487b7160e01b5f52604160045260245ffd5b60405160a081016001600160401b03811182821017156142db576142db6142a5565b60405290565b604051608081016001600160401b03811182821017156142db576142db6142a5565b604051601f8201601f191681016001600160401b038111828210171561432b5761432b6142a5565b604052919050565b5f6001600160401b0382111561434b5761434b6142a5565b50601f01601f191660200190565b5f82601f830112614368575f80fd5b815161437b61437682614333565b614303565b81815284602083860101111561438f575f80fd5b611cf7826020830160208701613e59565b5f6001600160401b038211156143b8576143b86142a5565b5060051b60200190565b5f60208083850312156143d3575f80fd5b82516001600160401b03808211156143e9575f80fd5b9084019060a082870312156143fc575f80fd5b6144046142b9565b825181528383015161441581613bf3565b8185015260408301518281111561442a575f80fd5b61443688828601614359565b60408301525060608301518281111561444d575f80fd5b8301601f8101881361445d575f80fd5b805161446b614376826143a0565b81815260059190911b8201860190868101908a831115614489575f80fd5b8784015b838110156144bf578051878111156144a3575f80fd5b6144b18d8b83890101614359565b84525091880191880161448d565b5060608501525050506080928301519281019290925250949350505050565b81810381811115612fba57612fba6141dc565b5f82601f830112614500575f80fd5b813561450e61437682614333565b818152846020838601011115614522575f80fd5b816020850160208301375f918101602001919091529392505050565b5f6020828403121561454e575f80fd5b81356001600160401b0380821115614564575f80fd5b9083019060808286031215614577575f80fd5b61457f6142e1565b823581526020830135602082015260408301358281111561459e575f80fd5b6145aa878286016144f1565b6040830152506060830135828111156145c1575f80fd5b6145cd878286016144f1565b60608301525095945050505050565b828152604060208201525f611cf76040830184613e7b565b5f60208284031215614604575f80fd5b8151612fcc81613bf3565b604081525f6146216040830185613e7b565b905082151560208301529392505050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215614656575f80fd5b81356001600160401b038082111561466c575f80fd5b908301906060828603121561467f575f80fd5b60405160608101818110838211171561469a5761469a6142a5565b604052823581526020830135828111156146b2575f80fd5b6146be878286016144f1565b6020830152506040830135828111156146d5575f80fd5b6146e1878286016144f1565b60408301525095945050505050565b5f60208284031215614700575f80fd5b81516001600160401b03811115614715575f80fd5b611cf784828501614359565b6001600160a01b038481168252831660208201526060604082018190525f9061474c90830184613e7b565b95945050505050565b6020815281516020820152602082015160408201525f60408301516080606084015261478460a0840182613e7b565b90506060840151601f1984830301608085015261474c8282613e7b565b5f602082840312156147b1575f80fd5b5051919050565b5f808335601e198436030181126147cd575f80fd5b83016020810192503590506001600160401b038111156147eb575f80fd5b8036038213156138b4575f80fd5b8183525f6001600160fb1b03831115614810575f80fd5b8260051b80836020870137939093016020019392505050565b8581528460208201526080604082015261ffff61484585613f9c565b1660808201525f602085013561485a81613bf3565b6001600160a01b031660a083015261487560408601866147b8565b606060c085015261488a60e085018284614245565b91505082810360608401526124f68185876147f9565b5f602082840312156148b0575f80fd5b8151612fcc8161409b565b87815286602082015285604082015261ffff8516606082015260c060808201525f6148ea60c0830185876147f9565b90506002831061490857634e487b7160e01b5f52602160045260245ffd5b8260a083015298975050505050505050565b84815283602082015260018060a01b0383166040820152608060608201525f6123e26080830184613e7b565b5f808335601e1984360301811261495b575f80fd5b8301803591506001600160401b03821115614974575f80fd5b6020019150600581901b36038213156138b4575f80fd5b5f614998614376846143a0565b80848252602080830192508560051b8501368111156149b5575f80fd5b855b818110156149ee5780356001600160401b038111156149d4575f80fd5b6149e036828a016144f1565b8652509382019382016149b7565b50919695505050505050565b5f610120878352866020840152853560ff8116808214614a18575f80fd5b6040850152506020860135614a2c8161409b565b1515606084015261ffff614a4260408801613f9c565b166080840152614a5460608701613c07565b6001600160a01b03811660a085015250608086013560c084015260a086013560e0840152806101008401526124f681840185876147f9565b8781525f602088602084015260018060a01b038816604084015260a06060840152614abb60a084018789614245565b8381036080850152848152602080820190600587901b830101875f5b88811015614b1157848303601f19018452614af2828b6147b8565b614afd858284614245565b958801959450505090850190600101614ad7565b50909d9c50505050505050505050505050565b5f8282518085526020808601955060208260051b840101602086015f5b84811015614b6f57601f19868403018952614b5d838351613e7b565b98840198925090830190600101614b41565b5090979650505050505050565b60208152614b966020820183516001600160a01b03169052565b5f6020830151614bb160408401826001600160a01b03169052565b50604083015160608301526060830151608083015260808301516101208060a0850152614be2610140850183613e7b565b915060a085015160c085015260c085015160e085015260e0850151610100601f198685030181870152614c158483614b24565b9601516001600160a01b03169190940152509192915050565b6001600160a01b03818116838216019080821115614c4e57614c4e6141dc565b509291505056fe8e94fed44239eb2314ab7a406345e6c5a8f0ccedf3b600de3d004e672c33abf4a26469706673582212200a539394f67de2ca340bc257b4a91e184e8110c0eb3d364046fae6da9fb6161564736f6c63430008180033
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.